Transverse Solitary Waves in a Dispersive Ring Bistable Cavity Containing a Saturable Nonlinearity

  • J. V. Moloney
  • A. C. Newell
  • D. W. McLaughlin


Stationary and nonstationary transverse solitary waves can gradually evolve when the incident Gaussian beam amplitude exceeds threshold for switching to the high transmission branch of a bistable ring cavity. The number of transverse solitary waves scales as the square root of the effective Fresnel number and as the incident laser amplitude. Predictions from an independent theory give quantitative agreement with the numerical computations.


Solitary Wave Central Peak Nonlinear Medium Saturable Nonlinearity Fresnel Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.V. Moloney and H.M. Gibbs, Phys. Rev. Lett. 48 1607 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    D.W. McLaughlin, J.V. Moloney and A.C. Newell, Phys. Rev. Lett. 51 75 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    D.W. McLaughlin, J.V. Moloney and A.C. Newell, to be published.Google Scholar
  4. 4.
    Exceptions are the recent articles on the driven Sine Gordon equation. A.R. Bishop, K. Fesser, P.S. Lomdahl, W.C. Kerr, M.B. Williams and S.E. Trullinger, Phys. Rev. Lett. 50, 1095 (1983);MathSciNetADSCrossRefGoogle Scholar
  5. 4a.
    J.C. Eilbeck, P.S. Lomdahl and A.C. Newell, Phys. Lett. 87A, 1, (1981).MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. V. Moloney
    • 1
  • A. C. Newell
    • 2
  • D. W. McLaughlin
    • 2
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations