Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-Off in a Simple Dye-Filled Etalon

  • M. C. Rushford
  • H. M. Gibbs
  • J. L. Jewell
  • N. Peyghambarian
  • D. A. Weinberger
  • C. F. Li


Continuous-wave optical bistability was easily achieved with the single-wavelength outputs from a cw visible Ar laser, rhodamine B or 6G dye lasers, and a He-Ne 632.8-nm laser. Input powers ranged from 5 mW to 2 W. A switch-on time as short as 20 μs was achieved with 100 mW of cw dye laser input. Using two adjacent or overlapping bistable transmission regions on the same etalon, we observed light by light control, with possible applications in optical signal processing. With two dye etalons in series we produced an optical flip-flop, permitting external switch-off as well as switch-on of an intrinsic bistable device. The simple etalon construction and flexibility in choice of lasers should encourage widespread use in testing various bistable operations, as well as in demonstrations and student labs.


Polarization Beam Splitter Optical Bistability Optical Signal Processing Regenerative Pulsation Capillary Attraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “ Optical bistability,” Opt. News 5:6 (1979).CrossRefGoogle Scholar
  2. 2.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Optical bistability devices: the basic components of all-optical systems,” Opt. Eng. 19:A63 (1980).Google Scholar
  3. 3.
    E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45:815 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    S. L. McCall and H. M. Gibbs, “Optical bistability via thermal effects in a glass filter,” J. Opt. Soc. Am. 68:1378 (1978).ADSGoogle Scholar
  5. 5.
    H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” CLEA 1979 and Appl. Phys. Lett. 35:451 (1979). These papers emphasize excitonic bistability, but thermal bistability is mentioned.CrossRefGoogle Scholar
  6. 6.
    H. J. Eichler, F. Massmann, and C. Zaki, “Modulation and compression of Nd:YAG laser pulses by self-tuning of a silicon cavity,” Opt. Commun. 40:302 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    F. V. Karpushko and G. V. Sinitsyn, “Spectral characteristics of nonlinear interferometers in a strong field,” J. Appl. Spectrosc. USSR 26:204 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    F. V. Karpushko and G. V. Sinitsyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” 29:1323 (1978).Google Scholar
  9. 9.
    F. V. Karpushko and G. V. Sinitsyn, “The anomalous nonlinearity and optical bistability in thin-film interference structures,” Appl. Phys. B 28:137 (1982)Google Scholar
  10. 10.
    D. A. Weinberger, H. M. Gibbs, C. F. Li, and M. C. Rushford, “Room-temperature optical bistability in thin-film interference filters,” Annual Meeting of the Optical Society of America, Tucson, Arizona, October, 1982.Google Scholar
  11. 11.
    F. P. Schafer, ed., 1973, “Dye Lasers,” Springer-Verlag, New York, pp. 3–4.CrossRefGoogle Scholar
  12. 12.
    S. Leutwyler, E. Schumacher, and L. Woste, “Extending the solvent palette for cw jet stream dye lasers,” Opt. Commun. 19:197, (1976).ADSCrossRefGoogle Scholar
  13. 13.
    H. M. Gibbs, J. L. Jewell, J. V. Moloney, M. C. Rushford, K. Tai, S. S. Tarng, D. A. Weinberger, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room temperature optical bistability and self-defocusing in semiconductor etalons,” IQEC ‘82 Postdeadline.Google Scholar
  14. 14.
    D. Weaire, B. S. Wherrett, D. A. B. Miller, and S. D. Smith, “The effect of low power nonlinear refraction on laser beam propagation in InSb,” Opt. Lett. 4:331 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, and W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40:291 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    K. Tai, J. V. Moloney, and H. M. Gibbs, “Optical crosstalk between nearby optical bistable devices on the same etalon,” Opt. Lett. 7:429 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    A. Szöke, “Bistable optical device,” United States Patent 3,813,605, May 28, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. C. Rushford
    • 1
  • H. M. Gibbs
    • 1
  • J. L. Jewell
    • 1
  • N. Peyghambarian
    • 1
  • D. A. Weinberger
    • 1
  • C. F. Li
    • 1
    • 2
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Harbin Institute of TechnologyHarbinPeople's Republic of China

Personalised recommendations