Advertisement

Zeeman Coherence Effects in Absorptive Polarization Bistability

  • Govind P. Agrawal

Abstract

The phenomenon of optical bistability (OB) is usually treated within the framework of a single optical mode interacting with a two-level system.1 Recently, attention has been paid to OB in three-level systems.2–10 Here, the physical process of transverse optical pumping,11 related to coherent population trapping, plays an important role. Of particular interest is the case of J = 1 → J = 0 transition of an atomic system wherein orthogonally circular-polarized components of a single incident beam interact with m = ± 1 ground state Zeeman sublevels (Λ-configuration). Depending on polarization characteristics of the incident beam, OB is observed in the beam intensity, the beam polarization, or both. Two-photon-induced Zeeman coherence is expected to play a significant role in such systems. In most of previous work,2–10 however, Zeeman coherence effects have been either ignored or incorporated only within the framework of a closed three-level system.

Keywords

Beam Polarization ZEEMAN Splitting Optical Bistability Polarization Ellipse Coherent Population Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Bowden, M. Ciftan, and H. R. Robl, eds., Optical Bistability (Plenum, New York, 1981).Google Scholar
  2. 2.
    D. F. Walls and P. Zoller, Opt. Commun. 34, 260 (1980)ADSCrossRefGoogle Scholar
  3. 2a.
    D. F. Walls, C. V. Kunasz, P. D. Drummond, and P. Zoller, Phys. Rev. A24, 627 (1981).ADSGoogle Scholar
  4. 3.
    M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett. 46, 926 (1981);MathSciNetADSCrossRefGoogle Scholar
  5. 3a.
    M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. A24, 3156 (1981).ADSGoogle Scholar
  6. 4.
    C.M. Savage, H. J. Carmichael, and D. F. Walls, Opt. Commun. 42, 211 (1982).ADSCrossRefGoogle Scholar
  7. 5.
    J. Mlynek, F. Mitschke, R. Deserno, and W. Lange, Appl. Phys. B28, 135 (1982).Google Scholar
  8. 6.
    F. T. Arecchi, G. Giusfredi, E. Petriella, and P. Salieri, Appl. Phys. B 29, 79 (1982).ADSCrossRefGoogle Scholar
  9. 7.
    S. Cecchi, G. Giusfredi, E. Petriella, and P. Salieri, Phys. Rev. Lett. 49, 1928 (1982).ADSCrossRefGoogle Scholar
  10. 8.
    H. J. Carmichael, C. M. Savage, and D. F. Walls, Phys. Rev. Lett. 50, 163 (1983).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    J. Mlynek, F. Mitschke, and W. Lange, these proceedings and Phys. Rev. Lett. 50, 1660 (1983).ADSGoogle Scholar
  12. 10.
    J. Mlynek, F. Mitschke, R. Deserno, and W. Lange, Phys. Rev. A (to be published).Google Scholar
  13. 11.
    G. Orriols, Nuovo Cimento 53B, 1 (1979).ADSGoogle Scholar
  14. 12.
    G. P. Agrawal, Appl. Phys. Lett. 38, 505 (1981).ADSCrossRefGoogle Scholar
  15. 13.
    J. Heppner, C. O. Weiss, U. Hubner, and G. Schinn, IEEE J Quantum Electron. QE-16, 392 (1980).ADSCrossRefGoogle Scholar
  16. 14.
    G. P. Agrawal, Phys. Rev. A (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Govind P. Agrawal
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations