Optical Bistability with Finite Bandwidth Noise

  • Axel Schenzle
  • Thomas Thel


In this paper we want to demonstrate how the statistical properties of nonlinear optical systems change when the fluctuations are generalized from the extreme limit of white noise to fluctuations with a finite bandwidth. While monostable systems seem to be affected only in a quantitative way, multistable processes may undergo qualitative changes when the bandwidth of noise is reduced.


Diffusion Matrix Conditional Probability Density Reduce Phase Space Noise Correlation Time Bistable Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Haken, Rev.Mod.Phys. 47, 67 (1975)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. Graham, Springer Tracts in Modern Physics Vol.66 (Springer, Berlin, 1972)Google Scholar
  3. 3.
    A. Szoeke, V. Daneu, J. Goldhar and N.A. Kurnit, Appl.Phys.Lett. l5, 376 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    S.L. McCall, Phys.Rev. A9, 1515 (1974)ADSGoogle Scholar
  5. 5.
    S.L. McCall, H.M. Gibbs and T.N.C. Vencatesan, Phys.Rev.Lett. 36, 1135 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    R. Bonifacio and L.A. Lugiato, Opt.Comm. 19, 172 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    A. Schenzle and H. Brand, Opt.Comm. 27, 485 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    R. Graham and A. Schenzle, Phys.Rev. A26, 1676 (1982)MathSciNetADSGoogle Scholar
  9. 9.
    G. Wilemsky, J.Stat.Phys. l4, 153 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    A. Schenzle and R. Graham, Proceedings of the S.Rochester Conference on Coherence and Quantum Optics (Plenum Press, New York 1983)Google Scholar
  11. 11.
    A. Schenzle, to be publishedGoogle Scholar
  12. 12.
    R. Bonifacio, M. Gronchi and L.A. Lugiato, Phys.Rev. A18, 2266 (1978)ADSGoogle Scholar
  13. 13.
    R. Graham and H. Haken, Z.Phys. 243, 289 (1971)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R. Graham in Fluctuations, Instabilities and Phase Transitions, ed. by T. Riste (Plenum Press, New York 1975)Google Scholar
  15. 15.
    R.L. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York 1963)Google Scholar
  16. 16.
    A. Schenzle and H. Brand, Opt.Comm. 31, 401 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    A. Schenzle and T. Thel, to be publishedGoogle Scholar
  18. 18.
    H. Brand, A. Schenzle and G. Schroeder, Phys.Rev. A25, 2324 (1982)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Axel Schenzle
    • 1
  • Thomas Thel
    • 1
  1. 1.University of EssenEssenWest Germany

Personalised recommendations