Critical Slowing Down and Magnetically-Induced Self-Pulsing in a Sodium-Filled Fabry-Perot Resonator

  • J. Mlynek
  • F. Mitschke
  • W. Lange


The level degeneracy of the ground state of atoms acting as a nonlinear medium in optical bistability experiments has attracted much attention recently. The well-known process of transverse optical pumping between Zeeman levels has been discussed as a mechanism yielding considerable nonlinearity even at low power densities1, and the corresponding experiment has been performed on a resonator filled with sodium atoms2. The process of longitudinal optical pumping has also been studied3. While in Refs. 2 and 3 only a single mode of the radiation field interacts with the atoms, the case of two orthogonally polarized degenerate modes has been dicussed, too. It has been predicted4 and experimentally established5 that optical tristability may arise, and it is quite obvious that in the two-mode case the system is capable of displaying a rich variety of behaviour6–9. In this paper we report on an expansion of the experiment of Ref. 2 to the study of transients in the one- and two-mode case.


Pulse Train Faraday Rotator Transverse Magnetic Field Optical Bistability Input Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F. Walls and P. Zoller, Opt.Comm.34 (1980) 260 and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    J. Mlynek, F. Mitschke, R. Deserno, and W. Lange, Appl.Phys. B28 (1982) 135Google Scholar
  3. 3.
    F.T. Arecchi, G. Giusfredi, E. Petriella, and P. Salieri, Appl.Phys. B29 (1982) 79ADSGoogle Scholar
  4. 4.
    M. Kitano, T. Yabuzaki, and T. Ogawa, Phys.Rev.Lett. 46 (1981) 924MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    S. Cecchi, G. Giusfredi, E. Petriella, and P. Salieri, Phys.Rev.Lett. 49 (1982) 1928Google Scholar
  6. 6.
    M. Kitano, T. Yabuzaki, and T. Ogawa, Phys.Rev. A24 (1981) 3156ADSGoogle Scholar
  7. 7.
    J.A. Hermann and D.F. Walls, Phys.Rev. A26 (1982) 2085 and references thereinADSGoogle Scholar
  8. 8.
    H.J. Carmichael, C.M. Savage, and D.F. Walls, Phys.Rev.Lett.50 (1983) 163.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    F.T. Arecchi, J. Kurmann, and A. Politi, Opt.Coram. 44 (1983) 421ADSCrossRefGoogle Scholar
  10. 10.
    F. Mitsenke, R. Deserno, J. Mlynek, and W. Lange, Opt.Comm. 46 (1983) 135 and references therein.Google Scholar
  11. 11.
    J. Mlynek, F. Mitschke, R. Deserno, and W. Lange:.“Optical bistability from three-level atoms using a coherent nonlinear mechanism”, submitted for publication.Google Scholar
  12. 12.
    G. Grynberg, S. Cribier, and E. Giacobino, in: “Laser Spectroscopy VI”(Eds.:H.P. Weber and W. Lüthy), Springer 1983 (in press).Google Scholar
  13. 13.
    F. Mitschke, J. Mlynek, and W. Lange, Phys.Rev.Lett. 50 (1983) 1660.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Mlynek
    • 1
  • F. Mitschke
    • 1
  • W. Lange
    • 1
  1. 1.Institut für QuantenoptikUniversität HannoverHannover 1Germany

Personalised recommendations