Advertisement

Observation of Ikeda Instabilities and Optical Bistability in an All-Optical Resonator Containing NH3 Gas

  • R. G. Harrison
  • C. A. Emshary
  • I. A. Al-Saidi
  • W. J. Firth

Abstract

Substantial effort over the last few years on optically bistable systems has more recently been extended to considerations of period-doubling cascades to chaotic behaviour1,2 in such systems. Passive all-optical systems are particularly interesting here, as basically simple arrangements capable of exhibiting oscillation3,4 and turbulence, but also because they can be fully quantised. Ikeda5 showed in 1979 that an optically-bistable ring resonator containing a two-level system can show a period-doubling cascade, a sufficiently strong c.w. input beam yielding an output oscillating at twice the resonator round trip time tR On further increasing the input field the output period doubles to chaos. Since then, observations of these phenomena have been made in various optical systems, such as a hybrid bistable device6 and lasers7,8 but the nearest approach to Ikeda’s system has been a recent demonstration9 in fibre-optic resonator, using mode-locked excitation to avoid stimulated scattering. None of these systems are particularly simple, nor do they lend themselves to quantisation.

Keywords

Ring Resonator Optical Bistability Bistable System Oscilloscope Trace Pump Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.N. Lorentz, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    H. Haken, Phys. Lett. 53A, 77 (1975).ADSGoogle Scholar
  3. 3.
    S.L. McCall, Phys. Rev. A9, (1974) 1515.ADSGoogle Scholar
  4. 4.
    L.A. Lugiato, Opt. Commun. 33, 108 (1980)ADSCrossRefGoogle Scholar
  5. 4a.
    R. Bonifacio, M. Gronchi and L.A. Lugiato, Opt. Commun. 30, 129 (1979).ADSCrossRefGoogle Scholar
  6. 5.
    K. Ikeda, Opt. Comm. 30, 257 (1979).ADSCrossRefGoogle Scholar
  7. 6.
    H.M. Gibbs, F.A. Hopf, D.L. Kaplan and R.L. Shoemaker Phys. Rev. Lett 46 474 (1981).ADSCrossRefGoogle Scholar
  8. 7.
    F.T. Arecchi, R. Meucci, G. Puccioni and J. Tredicce Phys. Rev. Lett. 49 1217 (1982).ADSCrossRefGoogle Scholar
  9. 8.
    C.O. Weiss and H. King, Opt. Commun. 44, 59 (1982).ADSCrossRefGoogle Scholar
  10. 9.
    H. Nakatsuka, S. Asaka, M. Itoh, K. Ikeda and M. Matsuoka, Phys. Rev. Lett 50, 109 (1983).ADSCrossRefGoogle Scholar
  11. 10.
    J.S. Garing, H.H. Nielsen and K. Narahari Row, J. Mol.Spect. 3, 496 (1985)ADSCrossRefGoogle Scholar
  12. 11.
    P.K. Gupta and R.G. Harrison, IEEE J. Quantum Electron QE-17, 2238 (1981).Google Scholar
  13. 12.
    C.H. Townes and A.L. Schawlow, Microwave Spectro scopy, New York: McGraw-Hill, 1955, p74.Google Scholar
  14. 13.
    H.M. Carmichael, R.R. Snapp and W.C. Schieve, Phys. Rev. A26, 3408 (1982).ADSGoogle Scholar
  15. 14.
    W.J. Firth, Opt. Commun. 39, 343 (1981).ADSCrossRefGoogle Scholar
  16. 15.
    J.V. Moloney, F.A. Hopf and H.M. Gibbs, Phys. Rev. A25, 3442 (1982).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. G. Harrison
    • 1
  • C. A. Emshary
    • 1
  • I. A. Al-Saidi
    • 1
  • W. J. Firth
    • 1
  1. 1.Department of PhysicsHeriot-Watt UniversityEdinburghUK

Personalised recommendations