A Mechanism for Chaos in a Nonlinear Optical System

  • J. V. Moloney
  • S. Hammel
  • C. R. T. Jones


We show, using a global phase space analysis, that the chaotic attractor appearing beyond the accumulation point of period doubling bifurcations in a ring bistable cavity is the accumulation of homoclinic orbits associated with unstable fixed points which remain on each successive bifurcation. In contrast to the one dimensional map, periodic cycles of any arbitrary period may, in principle, appear abruptly in the phase space and these in turn can undergo period doubling.


Unstable Manifold Chaotic Attractor Homoclinic Orbit Stable Manifold Period Doubling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ikeda, Opt. Commun. 30, 257 (1979)ADSCrossRefGoogle Scholar
  2. 1a.
    K. Ikeda, H. Daido and O. Akimoto, Phys. Rev. lett. 45, 709 (1980).ADSCrossRefGoogle Scholar
  3. 2.
    R.R. Snapp, H.J. Carmichael and W.C. Schieve, Opt. Commun. 40, 68 (1981)ADSCrossRefGoogle Scholar
  4. 3.
    J.V. Moloney, S. Hammeil, C.R.T. Jones, to be published.Google Scholar
  5. 4.
    “Nonlinear Dynamics” ed. R.H.G. Helleman, in Annals of the New York Academy of Sciences, 357, (1980)Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. V. Moloney
    • 1
  • S. Hammel
    • 2
  • C. R. T. Jones
    • 2
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Program in Applied MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations