Chaos in Optics

  • F. A. Hopf
  • M. W. Derstine
  • H. M. Gibbs
  • M. C. Rushford


Recently there has been a renewed interest in the random motion of deterministic systems, a subject dating back to Poincare. The original interest lay in trying to explain the fact that many-body problems in physics are well described by theories based on random behavior. Classical physics, however, views such systems as deterministic. It was discovered that most classical motions are, in fact, erratic, but the discovery of quantum mechanics caused the interest in this subject to die down. The revived interest lies in trying to understand turbulent behavior, which may be related to these erratic motions.


Shot Noise Round Trip Time Erratic Motion Waveform Change Half Wave Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167–192 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    M. Sargent III, M.O. Scully and W.E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass. 1974).Google Scholar
  3. 3.
    L. Landau, C.R. Acad. Sci. URSS 44, 311 (1944)MATHGoogle Scholar
  4. 3a.
    L. Landau and E.M. Lifshitz, Fluid Mechanics (Academic, Reading, Mass., 1959), pp. 103–107Google Scholar
  5. 4.
    J.P. Gollub and S.V. Benson, J. Fluid Mech. 100, 449 (1980).ADSCrossRefGoogle Scholar
  6. 5.
    M.J. Feigenbaum, Los Alamos Science 1, 4 (1980).MathSciNetGoogle Scholar
  7. 6.
    K. Ikeda, Opt. Comm. 30, 257 (1979)ADSCrossRefGoogle Scholar
  8. 6a.
    K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).ADSCrossRefGoogle Scholar
  9. 7.
    R. Bonifacio and L.A. Lugiato, Optics Comm. 19 (1976) 172ADSCrossRefGoogle Scholar
  10. 7a.
    R. Bonifacio and L.A. Lugiato Phys. Rev. Lett. 40 (1978) 1023ADSCrossRefGoogle Scholar
  11. 7b.
    SS. Hassan, P.D. Drummond and D.F. Walls, Optics Comm. 27 (1978) 480.ADSCrossRefGoogle Scholar
  12. 8.
    H.M. Gibbs, F.A. Hopf, D.L. Kaplan, and R.L Shoemaker, Phys. Rev. Lett. 46, 474 (1981).ADSCrossRefGoogle Scholar
  13. 8a.
    F.A. Hopf, D.L. Kaplan, H.M. Gibbs, and R.L Shoemaker, Phys. Rev. A 25, 2172 (1982).MathSciNetADSCrossRefGoogle Scholar
  14. 9.
    H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).ADSCrossRefGoogle Scholar
  15. 10.
    E.N. Lorenz, in Nonlinear Dynamics, edited by R.H.C. Helleman (New York Academy of Sciences, New York, 1980).Google Scholar
  16. 11.
    K. Ikeda (private communication)Google Scholar
  17. 12.
    J.P. Crutchfield and B.A. Huberman, Phy. Lett. 77A, 407 (1980).MathSciNetADSCrossRefGoogle Scholar
  18. 12a.
    J. Crutchfield, M. Nauenberg, and J. Rudnick, Phys. Rev. Lett. 46, 933 (1981);MathSciNetADSCrossRefGoogle Scholar
  19. 12b.
    B. Shraim, L.E. Wayne, and P.C. Martin, Phys. Rev. Lett. 46, 935 (1981).MathSciNetADSCrossRefGoogle Scholar
  20. 13.
    P.S. Lindsay, Phys. Rev. Lett. 47, 1349 (1981)ADSCrossRefGoogle Scholar
  21. 13a.
    W. Lauterborn and E. Cramer, Phys. Rev. Lett. 47, 1445 (1981).ADSCrossRefGoogle Scholar
  22. 14.
    M.W. Derstine, H.M. Gibbs, F.A. Hopf, and D.L. Kaplan, Phys. Rev. A 26, 3720 (1982).ADSCrossRefGoogle Scholar
  23. 15.
    K. Ikeda (private communication)Google Scholar
  24. 16.
    M.W. Derstine, H.M. Gibbs, F.A. Hopf, and D.L. Kaplan, Phys. Rev. A 27, 3200 (1983).ADSCrossRefGoogle Scholar
  25. 17.
    M. Gronchi, V. Benza, L.A. Lugiato, P. Meystre, and M. Sarget III, Phys. Rev. A 24, 1419 (1981).ADSCrossRefGoogle Scholar
  26. 18.
    K. Ikeda, K. Kondo, and O. Akimoto, Phys. Rev. Lett. 49, 1467 (1982).ADSCrossRefGoogle Scholar
  27. 19.
    K. Ikeda and F.A. Hopf (private communication)Google Scholar
  28. 20.
    R.R. Snapp, H.J. Charmlchael, and W.C. Shieve, Opt. Comm. 40, 68 (1981). J. Moloney to be published.ADSCrossRefGoogle Scholar
  29. 21.
    R.H. Simoyi, A. Wolf, H.L. Swinney, Phys. Rev. Lett. 49, 245 (1982); J.D. Farmer (personal communications), discussion of sensitivity of chaotic systems to noise and drift.MathSciNetADSCrossRefGoogle Scholar
  30. 22.
    LT. Arecchi, R. Meucci, G. Puccioni, and J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982).ADSCrossRefGoogle Scholar
  31. 23.
    L.N. Casperson, A. Yariv, App Phys Lett. 17, 259 (1970)ADSCrossRefGoogle Scholar
  32. 23a.
    L.N. Casperson: IEEE JQE-14, 756 (1978)Google Scholar
  33. 23b.
    L.N. Casperson: Phys. Rev. A, 21, 911(1980);MathSciNetADSCrossRefGoogle Scholar
  34. 23c.
    L.N. Casperson: Phys. Rev. A, 23, 248 (1981).ADSCrossRefGoogle Scholar
  35. 24.
    N.B. Abraham, M.D. Coleman, M. Maeda, and J.C. Wesson, App. Phys. B, 28, 169 (1982)ADSGoogle Scholar
  36. 24a.
    M. Maeda and N.B Abraham, Phys. Rev. A, 20, 3395 (1982).ADSCrossRefGoogle Scholar
  37. 25.
    J.E. Bjorkholm, P.W. Smith, W.J. Tomlinson, and A.E. Kaplan, Optics Lett. 6, (1981).Google Scholar
  38. 26.
    H.G. Winful and G. Cooperman, Appl. Phys. Lett. 40, 29 (1982).CrossRefGoogle Scholar
  39. 27.
    K. Ikeda and O. Aklmoto, Phys. Rev. Lett. 48, 617 (1982)MathSciNetADSCrossRefGoogle Scholar
  40. 27a.
    Y. Silberberg and L Bar Joseph, Phys. Rev. Lett. 48, 1541 (1982)ADSCrossRefGoogle Scholar
  41. 27b.
    J.A. Goldstone and E.A. Garmire, IEEE JQE-19, 208 (1983).Google Scholar
  42. 28.
    M.M. Litvak, Phys. Rev. A 2, 2107 (1970)ADSCrossRefGoogle Scholar
  43. 28a.
    L.N. Menegozzi, and W.E. Lamb Jr., Phys. Rev. A 17. (1978).Google Scholar
  44. 28b.
    For experiments see e.g. J.H. Parks, D.R. Rao, and A. Javan, Appl. Phys. Lett. 13, 142, (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • F. A. Hopf
    • 1
  • M. W. Derstine
    • 1
  • H. M. Gibbs
    • 1
  • M. C. Rushford
    • 1
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations