Multistability, Self-Oscillation and Chaos in Nonlinear Optics

  • H. J. Carmichael
  • C. M. Savage
  • D. F. Walls


It has been an important development in optical bistability to learn that bistable systems may become unstable, and for a cw input produce an oscillating output, either periodic or chaotic. Instabilities leading to periodic self-oscillation were first discussed by McCall1 and Bonifacio and Lugiato.2 The rapid growth of interest in optical chaos has followed Ikeda’s prediction of chaotic oscillations in a ring cavity with a dispersive nonlinearity.3 Experimental investigations of Ikeda’s proposal have been made4,5 and further predictions of chaos in bistable and multistable systems have been reported.6–10


Rayleigh Number Stable Limit Cycle Polarization Switching Optical Bistability Lorenz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. McCall, Appl. Phys. Lett. 32, 284 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).CrossRefGoogle Scholar
  3. 3.
    K. Ikeda, Optics Commun. 30, 257 (1979)ADSCrossRefGoogle Scholar
  4. 3a.
    K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45 709 (1980).ADSCrossRefGoogle Scholar
  5. 4.
    H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).ADSCrossRefGoogle Scholar
  6. 5.
    H. Nakatsuka, S. Asaka, H. Itah, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).ADSCrossRefGoogle Scholar
  7. 6.
    K. Ikeda and O. Akimoto, Phys. Rev. Lett. 48, 617 (1982).MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    L. A. Lugiato, L. M. Narducci, D. K. Brandy, and C. A. Pennise, Optics Commun. 43, 281 (1982).ADSCrossRefGoogle Scholar
  9. 8.
    C. M. Savage, H. J. Carmichael, and D. F. Walls, Optics Commun. 42, 211 (1982)ADSCrossRefGoogle Scholar
  10. 8a.
    H. J. Carmichael, C. M. Savage, and D. F. Walls, Phys. Rev. Lett. 50, 163 (1983).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    C. Parigger, P. Zoller, and D. F. Walls, Optics Commun. 44, 213 (1983).ADSCrossRefGoogle Scholar
  12. 10.
    C. M. Savage and D. F. Walls, Optica Acta, in press.Google Scholar
  13. 11.
    M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett. 46, 926 (1981).MathSciNetADSCrossRefGoogle Scholar
  14. 12.
    S. Cecchi, G. Giusfredi, E. Petriella, and P. Salieri, Phys. Rev. Lett. 49, 1928 (1982).ADSCrossRefGoogle Scholar
  15. 13.
    W. J. Sandle and M. W. Hamilton, in Proceedings of the Third New Zealand Symposium on Laser Physics (Springer) in press.Google Scholar
  16. 14.
    M. W. Hamilton, R. J. Ballagh, and W. Sandle, Z. Physik B, 49, 263 (1982).ADSCrossRefGoogle Scholar
  17. 15.
    C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Appl. Math. Sciences 41 (Springer, New York, 1982).MATHCrossRefGoogle Scholar
  18. 16.
    F. T. Arecchi and A. Politi, Lett. Nuovo Cimento 23, 65 (1978).CrossRefGoogle Scholar
  19. 17.
    A. Giacobino, M. Devaud, F. Biraben, and G. Grynberg, Phys. Rev. Lett. 45, 434 (1980).ADSCrossRefGoogle Scholar
  20. 18.
    K. J. McNeil, P. D. Drummond, and D. F. Walls, Optics Commun. 27, 292 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. J. Carmichael
    • 1
  • C. M. Savage
    • 2
  • D. F. Walls
    • 2
  1. 1.Department of PhysicsUniversity of ArkansasFayettevilleUSA
  2. 2.Physics DepartmentUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations