The Identification and Cloning of Genes Encoding Haloaromatic Catabolic Enzymes and the Construction of Hybrid Pathways for Substrate Mineralization

  • A. J. Weightman
  • R. H. Don
  • P. R. Lehrbach
  • K. N. Timmis
Part of the Basic Life Sciences book series (BLSC, volume 28)


Halogenated organic compounds constitute one of the largest groups of environmental pollutants and have achieved notoriety as a result of their widespread use despite concerns regarding their toxicity, bioconcentration, and persistence in the biosphere. Government legislation resulting in termination of production of some halogenated aromatics, for example, 2,2-bis (4-chlorophenyl)-1,1,1-trichloroethane (DDT) and the polychlorinated biphenyls (PCBs), has not alleviated problems related to these banned chemicals. According to data presented by Hutzinger and Veerkamp (49), further contamination of the environment may be threatened by PCBs occupying landfills where 22% of total production in the U.S.A. for domestic use since 1929 has been deposited. These authors also suggested that up to 63% of total production is likely still to be present in the environment.


Catabolic Pathway Catabolic Gene Conjugal Transfer Hybrid Plasmid Muconic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, M. (1965) Biodegradation: Problems of molecular recalcitrance and microbial fallibility. Adv. in Appl. Microbiol. 7:35–76.CrossRefGoogle Scholar
  2. 2.
    Alexander, M. (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138.PubMedCrossRefGoogle Scholar
  3. 3.
    Bagdasarian M., M.M. Bagdasarian, R. Lurz, A. Nordheim, J. Frey, and K.N. Timmis (1982) Molecular and functional analysis of the broad host range plasmid RSF1010 and construction of vectors for gene cloning in Gram-negative bacteria. In Drug Resistance in Bacteria. Genetics, Biochemistry and Molecular Biology, S. Mitsuhashi, ed. Thieme-Stratton Inc., New York, pp. 183–197.Google Scholar
  4. 4.
    Bagdasarian, M., R. Lurz, B. Rtickert, F.C.H. Franklin, M.M. Bagdasarian, J. Frey, and K.N. Timmis (1981) Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSFlOlO-derived vectors, and host-vector system for gene cloning in Pseudomonas. Gene 16:237–247.PubMedCrossRefGoogle Scholar
  5. 5.
    Bagdasarian, M., and K.N. Timmis (1982) Host:vector systems for gene cloning in Pseudomonas. Current Topics in Microbiology and Immunology 96:47–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Barth, P.T., L. Tobin, and G.S. Sharpe (1981) Development of broad host-range plasmid vectors. In Molecular Biology, Pathogenicity and Ecology of Bacteria Plasmids, S.B. Levy, R.C. Clowes, and E.L. Koenig, eds. Plenum Press, New York, pp. 439–448.CrossRefGoogle Scholar
  7. 7.
    Bartinicki, E.W., and C.E. Castro (1969) Biodehalogenation. The pathway for transhalogenation and the stereochemistry of epoxide formation from halohydrins. Biochemistry 8:4677–4680.CrossRefGoogle Scholar
  8. 8.
    Beringer, J.W., J.L. Beynon, A.V. Buchanan-Wollaston, and A.W.B. Johnston (1978) Transfer of the drug-resistance trans-poson Tn5 to Rhizobium. Nature (London) 276:633–634.CrossRefGoogle Scholar
  9. 9.
    Bochner, B.R., H-C. Huang, G.L. Schieven, and B.N. Ames (1980) Positive selection for loss of tetracycline resistance. J. Bact. 143:926–933.PubMedGoogle Scholar
  10. 10.
    Bollag, J.M., G.G. Briggs, J.E. Dawson, and M. Alexander (1968) 2,4-D metabolism. Enzymatic degradation of chlorocatechols. J. Agri. & Food Chem. 16:829–833.CrossRefGoogle Scholar
  11. 11.
    Bollag, J.M., C.S. Helling, and M. Alexander (1968) 2,4-D metabolism. Enzymatic hydroxylation of chlorinated phenols. J. Agri. & Food Chem. 16:826–828.CrossRefGoogle Scholar
  12. 12.
    Boulnois, G.J. (1981) Colicin lb does not cause plasmid-promot-ed abortive phage infection of Escherichia coli K-12. Mol. Gen. Genet. 182:508–510.PubMedCrossRefGoogle Scholar
  13. 13.
    Bourquin, A.W., and P.H. Pritchard (1979) Proceedings of the Workshop: Microbial Degradation of Pollutants in Marine Environments. U.S. Environmental Protection Agency, Washington, D.CGoogle Scholar
  14. 14.
    Cen, Y., G.L. Bender, M.J. Trinick, N.A. Morrison, K.F. Scott, P.M. Gresshoff, J. Shine, and B.F. Rolfe (1982) Transposon mutagenesis in Rhizobia which can modulate both legumes and the nonlegume Parasponia. Appl. Envir. Microbiol. 43:233–236.Google Scholar
  15. 15.
    Chapman, P.J. (1979) Degradation mechanisms. In Proceedings of the Workshop: Microbial Degradation of Pollutants in Marine Environments, A.W. Bourquin and P.H. Pritchard, eds. U.S. Environmental Protection Agency, Washington, D.C, pp. 28–66.Google Scholar
  16. 16.
    Chapman, P.J., and D.W. Ribbons (1976) Metabolism of resorcin-ylic compounds by bacteria: Alternative pathways for resorcin-ol catabolism in Pseudomonas putida. J. Bact. 125:985–998.PubMedGoogle Scholar
  17. 17.
    Chatterjee, D.K., and A.M. Chakrabarty (1982) Genetic rearrangements in plasmids specifying total degradation of chlorinated benzoic acids. Mol. Gen. Genet. 188:279–285.PubMedCrossRefGoogle Scholar
  18. 18.
    Chatterjee, D.K., and A.M. Chakrabarty (1983) Genetic homology between independently isolated chlorobenzoate-degradative Plasmids. J. Bact. 153:532–534.PubMedGoogle Scholar
  19. 19.
    Chatterjee, D.K., S.T. Kellogg, S. Hamada, and A.M. Chakrabarty (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bact. 146:639–646.PubMedGoogle Scholar
  20. 20.
    Colby, J., D.I. Stirling, and H. Dalton (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165:395–402.PubMedGoogle Scholar
  21. 21.
    Dagley, S. (1979) Pathways for the utilization of organic growth substrates. In The Bacteria. A Treatise on Structure and Function, I.C. Gunsalus, Chiefed, L.N. Ornston and J.R. Sokatch, vol. eds. Academic Press, New York, Vol. 7, pp. 305–388.Google Scholar
  22. 22.
    Dénarié, J., C. Rosenberg, B. Bergeron, C. Boucher, M. Michel, and M. Barate de Bertalinio (1977) Potential of RP4::Mu plas-mids for in vivo genetic engineering of gram-negative bacteria. In DNA Insertion Elements, Plasmids and Episomes, A.I. Bukharia, J.A. Shapiro, and S. Adhya, eds. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 507–520.Google Scholar
  23. 23.
    Ditta, G., S. Stanfield, D. Cerbin, and D.R. Helinski (1981) Cloning DNA from Rhizobium meliloti using a new broad host range, binary vehicle system. In Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen, Basic Life Sciences, A. Hollaender, ed. Plenum Press, New York, vol. 17, pp. 31–40.CrossRefGoogle Scholar
  24. 24.
    Don, R.H., (1983) Isolation and Genetic and Physical Analysis of Six Bacterial Plasmids Encoding Degradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid. Ph.D. Thesis, University of Queensland, Australia.Google Scholar
  25. 25.
    Don, R.H., and J.M. Pemberton (1981) Properties of six pesticide degrading plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bact. 145:681–686.PubMedGoogle Scholar
  26. 26.
    Dorn, E., and H-J. Knackmuss (1978) Chemical structure and bio-degradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J. 174:85–94.PubMedGoogle Scholar
  27. 27.
    Dunn, N.W., and I.C. Gunsalus (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bact. 114:974–979.PubMedGoogle Scholar
  28. 28.
    Duxbury, J.M., J.M. Tiedje, M. Alexander, and J.E. Dawson (1970). 2,4-D metabolism: enzymatic conversion of chloromal-eyacetic acid to succinic acid. J. of Agri & Food Chem. 18:199–201.CrossRefGoogle Scholar
  29. 29.
    Eaton, R.W., and K.N. Timmis (1983) Genetics of xenobiotic degradation. In Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington, USA (in press).Google Scholar
  30. 30.
    Ely, B. (1979) Transfer of drug resistance factors to the dimorphic bacterium Caulobacter crescentus. Genetics 91:371–380.PubMedGoogle Scholar
  31. 31.
    Ely, B., and R.H. Croft (1982) Transposon mutagenesis in Caulobacter crescentus. J. Bact. 149:620–625.PubMedGoogle Scholar
  32. 32.
    Engesser, K-H., E. Schmidt, and H-J. Knackmuss (1980) Adaption of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl. Envir. Microbiol. 39:68–73.Google Scholar
  33. 33.
    Evans, W.C., B.S.W. Smith, H.N. Fernley, and J.I. Davies (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J. 122:543–551.PubMedGoogle Scholar
  34. 34.
    Fennewald, M., and J.A. Shapiro (1979) Transposition of Tn7 in Pseudomonas aeruginosa and isolation of alk::Tn7 mutations. J. of Bacter. 139:264–269.Google Scholar
  35. 35.
    Fisher, P.R., J. Appleton, and J.M. Pemberton (1978) Isolation and characterization of the pesticide-degrading plasmid pJPl from Alcaligenes paradoxus. J. Bact. 135:798–804.PubMedGoogle Scholar
  36. 36.
    Foster, T.J. (1983) Transposon mapping and the use of plasmids in genetics. Analysis of plasmid functions with transposons. Methods in Microbiology, G. Grinstead and P.M. Bennett, eds. Academic Press, London (in press).Google Scholar
  37. 37.
    Franklin, F.C.H., M. Bagdasarian, M.M. Bagdasarian, and K.N. Timmis (1981) Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of the genes for the entire regulated aromatic ring meta-cleavage pathway. Proc. Nat. Acad. Sci., USA 78:7458–7462.CrossRefGoogle Scholar
  38. 38.
    Franklin, F.C.H., P.R. Lehrbach, R. Lurz, B. Rueckert, M. Bagdasarian, and K.N. Timmis (1983) Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. J. Bact. 154:676–685.PubMedGoogle Scholar
  39. 39.
    Frey, J., M. Bagdasarian, D. Feiss, F.C.H. Franklin, and J. Deshusses (1983) Stable cosmid vectors that enable the introduction of cloned fragments into a wide range of Gram-negative bacteria. Gene (in press).Google Scholar
  40. 40.
    Furakawa, K., and A.M. Chakrabarty (1982) Involvement of plasmids in the total degradation of chlorinated biphenyls. Appl. Envir. Microbiol. 44:619–626.Google Scholar
  41. 41.
    Gamar, Y., and J.K. Gaunt (1971) Bacterial metabolism of 4-chlorophenoxyacetate. Formation of glyoxylate by side chain cleavage. Biochem. J. 122:527–531.PubMedGoogle Scholar
  42. 42.
    Gaunt, J.K., and W.C. Evans (1971) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring fission, lac-tonizing and delactonizing enzymes. Biochem. J. 122:533–542.PubMedGoogle Scholar
  43. 43.
    Goldman, P. (1972) Enzymology of the carbon-halogen bond. In Degradation of Synthetic Organic Molecules in the Biosphere, National Academy of Sciences, Washington, pp. 147–165.Google Scholar
  44. 44.
    Guroff, G., J.W. Daly, D.M. Jernia, J. Renson, B. Witkop, and S. Undenfriend (1967) Hydroxylation-induced migration: the NIH shift. Science 157:1524–1530.PubMedCrossRefGoogle Scholar
  45. 45.
    Harayama S., M. Tsuda, and T. Iino (1980) High frequency mobilization of the chromosome of Escherichia coli by a mutant of plasmid RP4 temperature-sensitive for maintenance. Mol. Gen. Genet. 180:47–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Harayama, S., M. Tsuda, and T. Iino (1981) Tn1 insertion mutagenesis in Escherichia coli K-12 using a temperature-sensitive mutant of plasmid RP4. Mol. Gen. Genet. 184:52–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Holmes, D.S., and M. Quigly (1981) A rapid boiling method for the preparation of bacterial plasmids. Analyt. Biochem. 114: 193–197.PubMedCrossRefGoogle Scholar
  48. 48.
    Husain, M., B. Entsch, D.P. Ballou, V. Massey, and P.J. Chapman (1980) Fluoride elimination from substrates in hydroxylation reactions catalyzed by p-hydroxybenzoate hydroxylase. J. Biol. Chem. 255:4189–4197.PubMedGoogle Scholar
  49. 49.
    Huzinger, O., and W. Veerkamp (1981) Xenobiotic chemicals with pollution potential. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds, T. Leisinger, A.M. Cook, R. Hütter, and J. Nüesch, eds. Academic Press, London, pp. 3–45.Google Scholar
  50. 50.
    Jeenes, D.J., W. Reineke, H-J. Knackmuss, and P.A. Williams (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: enzyme regulation and DNA structure. J. Bact. 150:180–187.PubMedGoogle Scholar
  51. 51.
    Jeenes, D.J., and P.A. Williams (1982) Excision and integration of degradative pathway genes from TOL plasmid pWWO. J. Bact. 150:188–194.PubMedGoogle Scholar
  52. 52.
    Kaufman, D.D., and P.C. Kearney (1976) Microbial transformations in the soil. In Herbicides, Physiology, Biochemistry, Ecology, L.J. Audus, ed. Academic Press, London, Vol. 2, pp. 29–64.Google Scholar
  53. 53.
    Keil, H., U. Klages, and F. Lingens (1981) Degradation of 4-chlorobenzoic acid by Pseudomonas sp. CBS3: induction of catabolic enzymes. FEMS Microbiol. Lett. 10:213–215.CrossRefGoogle Scholar
  54. 54.
    Keith, L.H., and W.A. Teilliard (1979) Priority pollutants I -A perspective view. Env. Sci. and Tech. 13:416–423.CrossRefGoogle Scholar
  55. 55.
    Kellogg, S.T., D.K. Chatterjee, and A.M. Chakrabarty (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214: 1133–1135.PubMedCrossRefGoogle Scholar
  56. 56.
    Kilbane, J.J., D.K. Chatterjee, and A.M. Chakrabarty (1983) Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia. Appl. Envir. Microbiol. 45: 1697–1700.Google Scholar
  57. 57.
    Kilbane, J.J., D.K. Chatterjee, J.S. Karns, S.T. Kellogg, and A.M. Chakrabarty (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl. Envir. Microbiol. 44:72–78.Google Scholar
  58. 58.
    Klages, U., and F. Lingens (1979) Degradation of 4-chloroben-zoic acid by a Nocardia species. FEMS Microbiol. Lett. 6:201–203.CrossRefGoogle Scholar
  59. 59.
    Klages, U., and F. Lingens (1980) Degradation of 4-chloroben-zoic acid by a Pseudomonas sp. Zentrablatt für Bakteriologie Mikrobiologie und Hygiene 1. Abteilung Originale C1: 215–223.Google Scholar
  60. 60.
    Klages, U., A. Markus, and F. Lingens (1981) Degradation of 4-chloro-phenylacetic acid by a Pseudomonas species. J. Bact. 146:64–68.PubMedGoogle Scholar
  61. 61.
    Kleckner, N., R.K. Chan, B-K. Tye, and D. Botstein (1975) Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J. Mol. Biol. 94:561–575.CrossRefGoogle Scholar
  62. 62.
    Knackmuss, H-J. (1981) Degradation of halogenated and sulfonated hydrocarbons. In Microbial Degradation of Xenobiotic and Recalcitrant Compounds, T. Leisinger, A.M. Cook. R. Hütter and J. Ntiesch, eds. Academic Press, London, pp. 189–212.Google Scholar
  63. 63.
    Knackmuss, H.J., M. Hellwig, H. Lackner, and W. Otting (1976) Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing Pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl — and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid.Google Scholar
  64. 64.
    Kuner, J.M., and D. Kaiser (1981) Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Nat. Acad. Sci., USA 78:425–429.CrossRefGoogle Scholar
  65. 65.
    Kunz, D.A., and P.J. Chapman (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid. J. Bact. 146:179–191.PubMedGoogle Scholar
  66. 66.
    Leemans, J., J. Langenakeus, H. De Grève, R. Deblaere, M. Van Montagu, and J. Schell (1982) Broad-host range vectors derived from the W-plasmid Sa. Gene 19:361–364.PubMedCrossRefGoogle Scholar
  67. 67.
    Little, M., and P.A. Williams (1971) A bacterial halidohydrol-ase. Its purification, some properties and its modification by specific amino-acid reagents. Eur. J. Biochem. 21:99–109.PubMedCrossRefGoogle Scholar
  68. 68.
    Meynell, E., and M. Cooke (1969) Repressor minus and operator constitutive derepressed mutants of F-like R-factors, Their effect on chromosomal transfer by HfrC. Genetical Research (Camb.) 14:309–320.CrossRefGoogle Scholar
  69. 69.
    Ornston, L.N. (1970) Conversion of catechol and protocatechuate to ß-ketoadipate (Pseudomonas putida). Meth. in Enzym. 17A:529–549.CrossRefGoogle Scholar
  70. 70.
    Pemberton, J.M., B. Corney, and R.H. Don (1979) Evolution and spread of pesticide degrading ability among soil microorganisms. In Plasmids of Medical, Environmental and Commercial Importance, K.N. Timmis and A. Ptihler eds. Elsevier, N. Holland, Biomedical Press, pp. 287–299.Google Scholar
  71. 71.
    Pemberton, J.M., and P.R. Fisher (1977) 2,4-D plasmids and persistence. Nature (London) 268:732–733.CrossRefGoogle Scholar
  72. 72.
    Reineke, W., D.J. Jeenes, P.A. Williams, and H.J. Knackmuss (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. J. Bact. 150:195–201.PubMedGoogle Scholar
  73. 73.
    Reineke, W., and H-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Biophys. Acta 542:412–423.PubMedCrossRefGoogle Scholar
  74. 74.
    Reineke, W., and H-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. Biochim. Biophys. Acta 542:424–429.PubMedCrossRefGoogle Scholar
  75. 75.
    Reineke, W., and H-J. Knackmuss (1979) Construction of haloaro-matic utilizing bacteria. Nature (London) 277:385–386.CrossRefGoogle Scholar
  76. 76.
    Reineke, W., and H-J. Knackmuss (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bact. 142:467–473.PubMedGoogle Scholar
  77. 77.
    Reineke, W., S.W. Wessels, M.A. Rubio, J. Latorre, U. Schwien, E. Schmidt, M. Schlömann, and H-J. Knackmuss (1982) Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism. FEMS Microbiol. Lett. 14:291–294.CrossRefGoogle Scholar
  78. 78.
    Robinson, M.K., P.M. Bennett, S. Falkow, and H.M. Dodd (1980) Isolation of a temperature-sensitive derivative of RP1. Plasmid 3:343–347.PubMedCrossRefGoogle Scholar
  79. 79.
    Rothstein, S.J., and W.S. Reznikoff (1981) The functional differences in the inverted repeats of the Tn5 are caused by a single basepair nonhomology. Cell 23:191–200.PubMedCrossRefGoogle Scholar
  80. 80.
    Ruisinger, S., U. Klages, and F. Lingens (1976) Abbau der 4-chlorobenzoesäure durche eine Arthrobacter-species (Degradation of 4-chlorobenzoic acid by an Arthrobacter species). Arch. Microb. 110:253–256.CrossRefGoogle Scholar
  81. 81.
    Sato, M., B.J. Staskawicz, N.J. Panopoulos, S. Peters, and M. Honma (1981). A host-dependent hybrid plasmid suitable as a suicidal carrier for transposable elements. Plasmid 6:325–331.PubMedCrossRefGoogle Scholar
  82. 82.
    Schell, M.A. (1983) Cloning and expression in Escherichia coli of the naphthalene degradation genes from plasmid NAH7. J. Bact. 153:822–829.PubMedGoogle Scholar
  83. 83.
    Schmidt, E., and H-J. Knackmuss (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J. 192:339–347.PubMedGoogle Scholar
  84. 84.
    Schreiber, A., M. Hellwig, E. Dorn, W. Reineke, and H-J. Knackmuss (1980) Critical reactions in fluorbenzoic acid degradation by Pseudomonas sp. B13. Appl. Envir. Microbiol. 39:58–67.Google Scholar
  85. 85.
    Schröder, J., A. Hillebrand, W. Klipp, and A. Pühler (1981) Expression of plant tumor-specific proteins in minicells of Escherichia coli: a fusion protein of lysopine dehydrogenase with chloroamphenicol acetyltransferase. Nuc. Acid Res. 9: 5187–5202.CrossRefGoogle Scholar
  86. 86.
    Schwien, U., and E. Schmidt (1982) Improved degradation of monochlorophenols by a constructed strain. Appl. Envir. Microbiol. 44:33–39.Google Scholar
  87. 87.
    Sharpee, K.W., J.M. Duxbury, and M. Alexander (1973) 2,4-Di-chlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl. Microb. 26:445–447.Google Scholar
  88. 88.
    Simon, R., U. Priefer, and A. Ptihler (1983) Vector plasmids for in vivo and jLn vitro manipulations of Gram-negative bacteria. In Molecular Genetics of the Bacteria-Plant Interaction: Rhizobium, Agrobacterium and Plant Pathogenic Bacteria, A. Pühler, ed. Springer-Verlag, New York (in press).Google Scholar
  89. 89.
    Slater, J.H., D. Lovatt, A.J. Weightman, E. Senior, and A.T. Bull (1979) The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. J. Gen. Microb. 114:125–136.CrossRefGoogle Scholar
  90. 90.
    Stanier, R.Y., and L.N. Ornston (1973) The β-ketoadipate pathway. Adv. Microb. Phys. 9:89–151.CrossRefGoogle Scholar
  91. 91.
    Stanlake, G.J., and R.K. Finn (1982) Isolation and characterization of a pentachlorophenol degrading bacterium. Appl. Envir. Microbiol. 44:1421–1427.Google Scholar
  92. 92.
    Stirling, D.I., and H. Dalton (1979) The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath). FEMS Microb. Lett. 5:315–318.CrossRefGoogle Scholar
  93. 93.
    Stirling, D.I., and H. Dalton (1980) Oxidation of dimethyl ether, methyl formate and bromomethane by Methylococcus capsulatus (Bath). J. Gen. Microb. 116:277–283.Google Scholar
  94. 94.
    Stucki, G., W. Brunner, D. Staub, and T. Leisinger (1981) Microbial degradation of chlorinated C1 and C2 hydrocarbons. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds, T. Leisinger, A.M. Cook, R. Hütter, and J. Nüesch, eds. Academic Press, London, pp. 131–137.Google Scholar
  95. 95.
    Suida, J.F., and J.F. DeBernardis (1973) Naturally occurring halogenated organic compounds. Lloydia 36:107–143.Google Scholar
  96. 96.
    Thomson, J.A., M. Hendson, and R.M. Magnes (1981) Mutagenesis by insertion of drug-resistance transposon Tn7 into a Vibrio species. J. Bact. 148:374–378.PubMedGoogle Scholar
  97. 97.
    Tiedje, J.M., J.M. Duxbury, M. Alexander, and J.E. Dawson (1969) 2,4-D metabolism: pathway of degradation of chlorocate-chols by Arthrobacter sp. J. Agri. Food Chem. 17:1021–1026.CrossRefGoogle Scholar
  98. 98.
    Van Vliet, F., B. Silva, M. Van Montagu, and J. Schell (1978) Transfer of RP4::Mu plasmids to Agrobacterium tumefaciens. Plasmid 1:446–455.PubMedCrossRefGoogle Scholar
  99. 99.
    Vandenbergh, P.A., R.H. Olsen, and J.F. Colarnotolo (1981) Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl. Envir. Microbiol. 42:737–739.Google Scholar
  100. 100.
    Weightman, A.J., A.L. Weightman, and J.H. Slater (1982) Stereo-specificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms. J. Gen. Microb. 124:433–437.Google Scholar
  101. 101.
    Williams, P.A., and K. Murray (1974) Metabolism of benzoate and the methyl-benzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J. Bact. 120:416–423.PubMedGoogle Scholar
  102. 102.
    Worsey, M.J., and P.A. Williams (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bact. 124:7–13.PubMedGoogle Scholar
  103. 103.
    Yen, K-M. and I.C. Gunsalus (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Nat. Acad., USA 79: 874–878.CrossRefGoogle Scholar
  104. 104.
    Yen, K-M., M. Sullivan, and I.C. Gunsalus (1983) Electron microscope heteroduplex mapping of naphthalene oxidation genes on the NAH7 and SALI plasmids. Plasmid 9:105–111.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. J. Weightman
    • 1
  • R. H. Don
    • 1
  • P. R. Lehrbach
    • 1
  • K. N. Timmis
    • 1
  1. 1.Département de Biochimie MédicaleCentre Médicale UniversitaireGeneva 4Switzerland

Personalised recommendations