Bacterial Transformations of and Resistances to Heavy Metals

  • Simon Silver
  • Tapan K. Misra
Part of the Basic Life Sciences book series (BLSC, volume 28)


Bacteria carry out chemical transformations of heavy metals. These transformations (including oxidation, reduction, methylation, and demethylation) are sometimes byproducts of normal metabolism and confer no known advantage upon the organism responsible. Sometimes, however, the transformations constitute a mechanism of resistance. Many species of bacteria have genes that control resistances to specific toxic heavy metals. These resistances often are determined by extrachromosomal DNA molecules (plasmids). The same mechanisms of resistance occur in bacteria from soil, water, industrial waste, and clinical sources. The mechanism of mercury and organomercurial resistance is the enzymatic detoxification of the mercurials into volatile species (methane, ethane, metallic Hg) which are rapidly lost from the environment. Cadmium and arsenate resistances are due to reduced net accumulation of these toxic materials. Efficient efflux pumps cause the rapid excretion of Cd2+ and AsO4 3-,. The mechanisms of arsenite and of antimony resistance, usually found associated with arsenate resistance, are not known. Silver resistance is due to lowered affinity of the cells for Ag, which can be complexed with extracellular halides, thiols, or organic compounds. Sensitivity is due to binding of Ag more effectively to cells than to Cl-.


Heavy Metal Efflux System Heavy Metal Resistance Bacterial Transformation Mercuric Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, A. (1973) Arsenicals, antimonials and mercurials. In Selective Toxicity, Fifth Edition, Chapman and Hall, London, pp. 392–397.Google Scholar
  2. 2.
    Annear, D.I., B.J. Mee, and M. Bailey (1976) Instability and linkage of silver resistance, lactose fermentation and colony structure in Enterobacter cloacae from burn wounds. J. Clin. Path. 29:441–443.PubMedCrossRefGoogle Scholar
  3. 3.
    Arima, K., and M. Beppu (1964) Induction and mechanisms of ar-senite resistance in Pseudomonas pseudomallei. J. Bacteriol. 88:143–150.PubMedGoogle Scholar
  4. 4.
    Bennett, P.M., J. Grinsted, C.L. Choi, and M.H. Richmond (1978) Characterization of Tn501, a transposon determining resistance to mercuric ions. Mol. Gen. Genet. 159:101–106.PubMedCrossRefGoogle Scholar
  5. 5.
    Beppu, M., and K. Arima (1964) Decreased permeability as the mechanism of arsenite resistance in Pseudomonas pseudomallei. J. Bacteriol. 88:151–157.PubMedGoogle Scholar
  6. 6.
    Bisogni, Jr., J.J. (1979) Kinetics of methylmercury formation and decomposition in aquatic environments. In The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, ed. Elsevier/North Holland Press, Amsterdam, pp. 221–230.Google Scholar
  7. 7.
    Bopp, L.H., A.M. Chakrabarty, and H.L. Ehrlich (1983) Plasmid-determined resistance to Cr(VI) and reduction of Cr(VI) to Cr(III). J. Bacteriol. 155:1105–1109.PubMedGoogle Scholar
  8. 8.
    Bragg, P.D., and D.J. Rainnie (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20:883–889.PubMedCrossRefGoogle Scholar
  9. 9.
    Bridges, K., A. Kidson, E.J.L. Lowbury, and M.D. Wilkins (1979) Gentamicin- and silver-resistant Pseudomonas in a burns unit. Brit. Med. J. 1:446–449.PubMedCrossRefGoogle Scholar
  10. 10.
    Brinkman, F.E., G.J. Olson, and W.P. Iverson (1982) The production and fate of volatile molecular species in the environment: Metals and metalloids. In Atmospheric Chemistry. Dahlem Konferenzen, E.D. Goldberg, ed. Springer-Verlag, Berlin, pp. 231–249.CrossRefGoogle Scholar
  11. 11.
    Brown, N.L., S.J. Ford, R.D. Pridmore, and D.C. Fritzinger (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22:4089–4095.PubMedCrossRefGoogle Scholar
  12. 12.
    Clark, D.L., A.A. Weiss, and S. Silver (1977) Mercury and organomercurial resistance determined by plasmids in Pseudomonas. J. Bacteriol. 132:186–196.PubMedGoogle Scholar
  13. 13.
    Corrigan, A.J., and P.C. Huang (1981) Cellular uptake of cadmium and zinc. Biol. Trace Element Res. 3:197–216.CrossRefGoogle Scholar
  14. 14.
    Cullen, W.R., B.C. McBride, and A.W. Pickett (1979) The transformation of arsenicals by Candida humicola. Can. J. Microbiol. 25:1201–1205.PubMedCrossRefGoogle Scholar
  15. 15.
    Edwards, T., and B.C. McBride (1975) Biosynthesis and degradation of methylmercury in human faeces. Nature 253:462–463.CrossRefGoogle Scholar
  16. 16.
    Foster, T.J., H. Nakahara, A.A. Weiss, and S. Silver (1979) Transposon A-generated mutations in the mercuric resistance genes of plasmid R100–1. J. Bacteriol. 140:167–181.PubMedGoogle Scholar
  17. 17.
    Fox, B., and C.T. Walsh (1982) Mercuric reductase: Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction active sulfide. J. Biol. Chem. 257:2498–2503.PubMedGoogle Scholar
  18. 18.
    Fox, Jr. C.L. (1968) Silver sulfadiazine. A new topical for Pseudomonas in burns. Arch. Surg. 96:184–188.PubMedCrossRefGoogle Scholar
  19. 19.
    Fox, Jr., C.L., and S.M. Modak (1974) Mechanism of silver sulfadiazine action on burn wound infections.. Antimicrob. Agents Chemother. 5:582–588.PubMedCrossRefGoogle Scholar
  20. 20.
    Friello, D.A., and A.M. Chakrabarty (1980) Transposable mercury resistance in Pseudomonas putida. In Plasmids and Transposons: Environmental Effects and Maintenance Mechanisms, C. Suttard and K.R. Rozee, eds. Academic Press, New York, pp. 249–260.Google Scholar
  21. 21.
    Furukawa, K., T. Suzuki, and K. Tonomura (1969) Decomposition of organic mercurial compounds by mercury-resistant bacteria. Agric. Biol. Chem. 33:128–130.CrossRefGoogle Scholar
  22. 22.
    Furukawa, K., and K. Tonomura (1971) Enzyme system involved in the decomposition of phenyl mercuric acetate by mercury-resistant Pseudomonas. Agric. Biol. Chem. 35:604–610.CrossRefGoogle Scholar
  23. 23.
    Furukawa, K., and K. Tonomura (1972) Metallic mercury-releasing enzyme in mercury-resistant Pseudomonas. Agric. Biol. Chem. 36:217–226.CrossRefGoogle Scholar
  24. 24.
    Gardner, P., D.H. Smith, H. Beer, and R.C. Moellering Jr. (1969) Recovery of resistance (R) factors from a drug-free community. Lancet 2:774–776.PubMedCrossRefGoogle Scholar
  25. 25.
    Groves, D.J., and F.E. Young (1975) Epidemiology of antibiotic and heavy metal resistance in bacteria: Resistance patterns in Staphylococci isolated from populations not known to be exposed to heavy metals. Antimicrob. Agents Chemother. 7:614–621.PubMedCrossRefGoogle Scholar
  26. 26.
    Halbach, S., and T.W. Clarkson (1978) Enzymatic oxidation of mercury vapor by erythrocytes. Biochim. Biophys. Acta 523:522–531.PubMedCrossRefGoogle Scholar
  27. 27.
    Hailas, L.E., and J.J. Cooney (1981) Tin and tin-resistant microorganisms in Chesapeake Bay. Appl. Env. Microbiol. 41:446–471.Google Scholar
  28. 28.
    Hallas, L.E., J.C. Means, and J.J. Cooney (1982) Methylation of tin by estuarine microorganisms. Science 215:1505–1507.PubMedCrossRefGoogle Scholar
  29. 29.
    Hamdy, M.K., and O.R. Noyes (1975) Formation of methylmercury by bacteria. Appl. Microbiol. 30:424–432.PubMedGoogle Scholar
  30. 30.
    Hedges, R.W., and S. Baumberg (1973) Resistance to arsenic compounds conferred by a plasmid transmissable between strains of Escherichia coli. J. Bacteriol. 115:459–460.PubMedGoogle Scholar
  31. 31.
    Hendry, A.T., and L.O. Stewart (1979) Silver-resistant entero-bacteriaceae from hospital patients. Can. J. Microbiol. 25:915–921.PubMedCrossRefGoogle Scholar
  32. 32.
    Holm, H.W., and M.F. Cox (1975) Transformation of elemental mercury by bacteria. Appl. Microbiol. 29:491–494.PubMedGoogle Scholar
  33. 33.
    Ishihara, M., Y. Kamio, and Y. Terawaki (1978) Cupric ion resistance as a new marker of a temperature sensitive R plasmid, Rtsl in Escherichia coli. Biochem. Biophys. Res. Comm. 82:74–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Izaki, K. (1981) Enzymatic reduction of mercurous and mercuric ions in Bacillus cereus. Can. J. Microbiol. 27:192–197.PubMedCrossRefGoogle Scholar
  35. 35.
    Izaki, K., Y. Tashiro, and T. Funaba (1974) Mechanism of mercuric chloride resistance in microorganisms. III. Purification and properties of a mercuric ion reducing enzyme from Escherichia coli bearing R factor. J. Biochem. 75:591–599.PubMedGoogle Scholar
  36. 36.
    Jensen, S., and A. Jernelöv (1969) Biological methylation of mercury in aquatic organisms. Nature 223:753–754.PubMedCrossRefGoogle Scholar
  37. 37.
    Komura, I., T. Funaba, and K. Izaki (1971) Mechanism of mercuric chloride resistance in microorganisms. II. NADPH-depend-ent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain of Escherichia coli. J. Biochem. 70:895–901.PubMedGoogle Scholar
  38. 38.
    Krauth-Siegel, R.L., R. Blatterspiel, M. Saleh, E. Schütz, R.H. Schirmer, and R. Untucht-Grau (1982) Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur. J. Biochem. 121:259–267.PubMedCrossRefGoogle Scholar
  39. 39.
    Maré, I.J. (1968) Incidence of R factors among gram negative bacteria in drug-free human and animal communities. Nature 220:1046–1047.PubMedCrossRefGoogle Scholar
  40. 40.
    McBride, B.C., and T.L. Edwards (1977) Role of the methanogenic bacteria in the alkylation of arsenic and mercury. In ERDA Symposium Series #42, pp. 1–19.Google Scholar
  41. 41.
    McHugh, G.L., R.C. Moellering, C.C. Hopkins, and M.N. Schwartz (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1:235–240.PubMedCrossRefGoogle Scholar
  42. 42.
    McMurry, L., R.E. Petrucci Jr., and S.B. Levy (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci., USA 77:3974–3977.PubMedCrossRefGoogle Scholar
  43. 43.
    Mobley, H.L.T., and B.P. Rosen (1982) Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc. Natl. Acad. Sci., USA 79:6119–6122.PubMedCrossRefGoogle Scholar
  44. 44.
    Nakahara, H., T. Ishikawa, Y. Sarai, and I. Kondo (1977) Distribution of resistances to metals and antibiotics of Staphylococcal strains in Japan. Zentralb. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1 Abt. Prig. A 237:470–476.Google Scholar
  45. 45.
    Nakahara, H., T. Ishikawa, Y. Sarai, I. Kondo, H. Kozukue, and S. Silver (1977) Linkage of mercury, cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl. Envir. Microbiol. 33:975–976.Google Scholar
  46. 46.
    Nakahara, H., and H. Kozukue (1982) Volatilization of mercury determined by plasmids in E. coli isolated from an aquatic environment. In Drug Resistance in Bacteria: Genetics, Biochemistry, and Molecular Biology, S. Mitsuhashi, ed. Japanese Scientific Societies Press, Tokyo, pp. 337–340.Google Scholar
  47. 47.
    Nakahara, H., S. Silver, T. Miki, and R.H. Rownd (1979) Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J. Bacteriol. 140:161–166.PubMedGoogle Scholar
  48. 48.
    Nelson, Jr., J.D., and R.R. Colwell (1975) The ecology of mercury-resistant bacteria in Chesapeake Bay. Microb. Ecol. 1:191–218.CrossRefGoogle Scholar
  49. 49.
    NiBhriain, N., S. Silver, and T.J. Foster (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J. Bacteriol. 155:690–703.Google Scholar
  50. 50.
    Novick, R.P., E. Murphy, T.J. Gryczan, E. Baron, and I. Edelman (1979) Penicillinase plasmids of Staphylococcus aureus: Restriction-deletion maps. Plasmid 2:109–129.PubMedCrossRefGoogle Scholar
  51. 51.
    Novick, R.P., and C. Roth (1968) Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95:1335–1342.PubMedGoogle Scholar
  52. 52.
    Olson, B.H., T. Barkay, and R.R. Colwell (1979) Role of plasmids in mercury transformation by bacteria isolated from aquatic environment. Appl. Env. Microbiol. 38:478–485.Google Scholar
  53. 53.
    Olson, G.J., W.P. Iverson, and F.E. Brinckman (1981) Volatilization of mercury by Thiobacillus ferrooxidans. Current Microbiol. 5:115–118.CrossRefGoogle Scholar
  54. 54.
    Olson, G.J., F.D. Porter, J. Rubinstein, and S. Silver (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J. Bacteriol. 151:1230–1236.PubMedGoogle Scholar
  55. 55.
    Osborne, F.H., and H.L. Ehrlich (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J. Appl. Bacteriol. 41:295–305.PubMedCrossRefGoogle Scholar
  56. 56.
    Parris, G.E., and F.E. Brinckman (1976) Reactions which relate to environmental mobility of arsenic and antimony. II. Oxidation of trimethylarsine and trimethylstibine. Env. Sci. Technol. 10:1128–1134.CrossRefGoogle Scholar
  57. 57.
    Perry, R.D., and S. Silver (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J. Bacteriol. 150:973–976.PubMedGoogle Scholar
  58. 58.
    Phillips, S.E., and M.L. Taylor (1976) Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Env. Microbiol. 32:392–399.Google Scholar
  59. 59.
    Pickett, A.W., B.C. McBride, W.R. Cullen, and H. Manji (1981) The reduction of trimethylarsine by Candida humicola. Can. J. Microbiol. 27:773–778.PubMedCrossRefGoogle Scholar
  60. 60.
    Porter, F.D., C. Ong, S. Silver, and H. Nakahara (1982) Selection for mercurial resistance in hospital settings. Anti-microb. Agents Chemother. 22:852–858.CrossRefGoogle Scholar
  61. 61.
    Radford, A.J., J. Oliver, W.J. Kelly, and D.C. Reanney (1981) Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. J. Bacteriol. 147:1110–1112.PubMedGoogle Scholar
  62. 62.
    Ridley, W.P., L.J. Dizikes, and J.M. Wood (1977) Biomethylation of toxic elements in the environment. Science 197:329–332.PubMedCrossRefGoogle Scholar
  63. 63.
    Rinderle, S.J., J.E. Booth, and J.W. Williams (1983) Mercuric reductase from R-plasmid NR1: Characterization and mechanistic study. Biochem. 22:869–876.CrossRefGoogle Scholar
  64. 64.
    Schottel, J.L. (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253:4341–4349.PubMedGoogle Scholar
  65. 65.
    Schottel, J., A. Mandai, D. Clark, S. Silver, and R.W. Hedges (1974) Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337.PubMedCrossRefGoogle Scholar
  66. 66.
    Schreurs, W.J.A., and H. Rosenberg (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152:7–13.PubMedGoogle Scholar
  67. 67.
    Silver, S. (1978) Transport of cations and anions. In Bacterial Transport, B.P. Rosen, ed. Marcel Dekker, Inc., New York, pp. 221–324.Google Scholar
  68. 68.
    Silver, S. (1981) Mechanisms of bacterial resistances to toxic heavy metals: Arsenic, antimony, silver, cadmium and mercury. In Environmental Speciation and Monitoring Needs for Trace Metal-Containing Substances from Energy-Related Processes, F.E. Brinckman and R.H. Fish, eds. Special Publ. 618. National Bureau of Standards, Washington, D.C., pp. 301–314.Google Scholar
  69. 69.
    Silver, S. (1981) Mechanisms of plasmid-determined heavy metal resistances. In Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids, S.B. Levy, R.C. Clowes, and E.L. Koenig, eds. Plenum Press, New York, pp. 179–189.CrossRefGoogle Scholar
  70. 70.
    Silver, S., (1983) Bacterial transformations of and resistances to heavy metals. In Changing Metal Cycles and Human Health, Dahlem Konferenzen, J.O. Nriagu, ed. Springer-Verlag, Berlin (in press).Google Scholar
  71. 71.
    Silver, S., K. Budd, K.M. Leahy, W.V. Shaw, K. Hammond, R.P. Novick, G.R. Willsky, M.H. Malamy, and H. Rosenberg (1981) Inducible plasmid-determined resistance to arsenate, arsenite and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146:983–996.PubMedGoogle Scholar
  72. 72.
    Silver, S., and D. Keach (1982) Energy-dependent arsenate efflux: The mechanism of plasmid-mediated resistance. Proc. Natl. Acad. Sci., USA, 79:6114–6118.PubMedCrossRefGoogle Scholar
  73. 73.
    Silver, S., and T.G. Kinscherf (1982) Genetic and biochemical bases for microbial transformations and detoxification of mercury and mercurial compounds. In Biodegradation and Detoxification of Environmental Pollutants, A.M. Chakrabarty, ed. CRC Press, Boca Raton, FL, pp. 85–103.Google Scholar
  74. 74.
    Silver, S., R.D. Perry, Z. Tynecka, and T.G. Kinscherf (1982) Mechanisms of bacterial resistances to the toxic heavy metals antimony, arsenic, mercury and silver. In Drug Resistance in Bacteria: Genetics, Biochemistry, and Molecular Biology, S. Mitsuhashi, ed. Japan Scientific Societies Press, Tokyo, pp. 347–361.Google Scholar
  75. 75.
    Smith, D.H. (1967) R factors mediate resistances to mercury, nickel, and cobalt. Science 156:1114–1116.PubMedCrossRefGoogle Scholar
  76. 76.
    Smith, H.W. (1978) Arsenic resistance in Enterobacteria: Its transmission by conjugation and by phage. J. Gen. Microbiol. 109:49–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Summers, A.O., G.A. Jacoby, M.N. Swartz, G. McHugh, and L. Sutton (1978) Metal cation and oxyanion resistances in plasmids of gram-negative bacteria. In Microbiology 1978, D. Schlessinger, ed. American Society for Microbiology, Washington, D.C., pp. 128–131.Google Scholar
  78. 78.
    Summers, A.O., and S. Silver (1972) Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112:1128–1136.Google Scholar
  79. 79.
    Summers, A.O., and S. Silver (1978) Microbial transformation of metals. Ann. Rev. Microbiol. 32:637–672.CrossRefGoogle Scholar
  80. 80.
    Tetaz, T.J., and R.K.J. Luke (1983) Plasmid-controlled resistance to copper in Escherichia coli. J. Bacteriol. 154:1263–1268.PubMedGoogle Scholar
  81. 81.
    Tezuka, T., and K. Tonomura (1976) Purification and properties of an enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62 strain. I. Splitting enzyme 1. J. Biochem. 80:79–87.PubMedGoogle Scholar
  82. 82.
    Tezuka, T., and K. Tonomura (1978) Purification and properties of a second enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62. J. Bacteriol. 135:138–143.PubMedGoogle Scholar
  83. 83.
    Timoney, J.F., J. Port, J. Giles, and J. Spanier (1978) Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Appl. Env. Microbiol. 36:465–472.Google Scholar
  84. 84.
    Tonomura, K., and F. Kanzaki (1969) The reductive decomposition of organic mercurials by cell-free extract of a mercury-resistant pseudomonad. Biochim. Biophys. Acta 184:227–229.PubMedCrossRefGoogle Scholar
  85. 85.
    Tynecka, Z., Z. Gos, and J. Zajac (1981) Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147:313–319.PubMedGoogle Scholar
  86. 86.
    Tynecka, Z., Z. Gos, and J. Zajac (1981) Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J. Bacteriol. 147:305–312.PubMedGoogle Scholar
  87. 87.
    Vonk, J.W., and A.K. Sijpesteijn (1973) Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Anton. vanLeeuwenhoek J. Microbiol. Serol. 39:505–513.Google Scholar
  88. 88.
    Weiss, A.A., S.D. Murphy, and S. Silver (1977) Mercury and or-ganomercurial resistances determined by plasmids in Staphylococcus aureus. J. Bacteriol. 132:197–208.PubMedGoogle Scholar
  89. 89.
    Weiss, A.A., S. Silver, and T.G. Kinscherf (1978) Cation transport alteration associated with plasmid-determined resistance to cadmium in Staphylococcus aureus. Antimicrob. Agents Chemother. 14:856–865.PubMedCrossRefGoogle Scholar
  90. 90.
    Weiss, A.A., J.L. Schottel, D.L. Clark, R.G. Beller, and S. Silver (1978) Mercury and organomercurial resistance with enteric, staphylococcal, and pseudomonad plasmids. In Microbiology 1978, D. Schlessinger, ed. American Society for Microbiology, Washington, D.C., pp. 121–124.Google Scholar
  91. 91.
    Williams, Jr., C.H., L.D. Arscott, and G.E. Schulz (1982) Amino acid sequence homology between pig heart lipoamide dehydrogenase and human erythrocyte glutathione reductase. Proc. Natl. Acad. Sci., USA 79:2199–2201.PubMedCrossRefGoogle Scholar
  92. 92.
    Witte, W., N. Van Dip, and R. Hummel (1980) Resistenz gegen quecksilber und cadmium bei Staphylococcus aureus unterschiedlicher okologischer herkunft. Z. Allg. Mikrobiol. 20:517–521.PubMedCrossRefGoogle Scholar
  93. 93.
    Wood, J.M., A. Cheh, L.J. Dizikes, W.P. Ridley, S. Rakow, and J.R. Lakowicz (1978) Mechanisms for the biomethylation of metals and metalloids. Fed. Proc. 37:16–21.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Simon Silver
    • 1
  • Tapan K. Misra
    • 1
  1. 1.Biology DepartmentWashington UniversitySt. LouisUSA

Personalised recommendations