Skip to main content

Bacterial Transformations of and Resistances to Heavy Metals

  • Chapter
Genetic Control of Environmental Pollutants

Part of the book series: Basic Life Sciences ((BLSC,volume 28))

Abstract

Bacteria carry out chemical transformations of heavy metals. These transformations (including oxidation, reduction, methylation, and demethylation) are sometimes byproducts of normal metabolism and confer no known advantage upon the organism responsible. Sometimes, however, the transformations constitute a mechanism of resistance. Many species of bacteria have genes that control resistances to specific toxic heavy metals. These resistances often are determined by extrachromosomal DNA molecules (plasmids). The same mechanisms of resistance occur in bacteria from soil, water, industrial waste, and clinical sources. The mechanism of mercury and organomercurial resistance is the enzymatic detoxification of the mercurials into volatile species (methane, ethane, metallic Hg) which are rapidly lost from the environment. Cadmium and arsenate resistances are due to reduced net accumulation of these toxic materials. Efficient efflux pumps cause the rapid excretion of Cd2+ and AsO4 3-,. The mechanisms of arsenite and of antimony resistance, usually found associated with arsenate resistance, are not known. Silver resistance is due to lowered affinity of the cells for Ag, which can be complexed with extracellular halides, thiols, or organic compounds. Sensitivity is due to binding of Ag more effectively to cells than to Cl-.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, A. (1973) Arsenicals, antimonials and mercurials. In Selective Toxicity, Fifth Edition, Chapman and Hall, London, pp. 392–397.

    Google Scholar 

  2. Annear, D.I., B.J. Mee, and M. Bailey (1976) Instability and linkage of silver resistance, lactose fermentation and colony structure in Enterobacter cloacae from burn wounds. J. Clin. Path. 29:441–443.

    Article  PubMed  CAS  Google Scholar 

  3. Arima, K., and M. Beppu (1964) Induction and mechanisms of ar-senite resistance in Pseudomonas pseudomallei. J. Bacteriol. 88:143–150.

    PubMed  CAS  Google Scholar 

  4. Bennett, P.M., J. Grinsted, C.L. Choi, and M.H. Richmond (1978) Characterization of Tn501, a transposon determining resistance to mercuric ions. Mol. Gen. Genet. 159:101–106.

    Article  PubMed  CAS  Google Scholar 

  5. Beppu, M., and K. Arima (1964) Decreased permeability as the mechanism of arsenite resistance in Pseudomonas pseudomallei. J. Bacteriol. 88:151–157.

    PubMed  CAS  Google Scholar 

  6. Bisogni, Jr., J.J. (1979) Kinetics of methylmercury formation and decomposition in aquatic environments. In The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, ed. Elsevier/North Holland Press, Amsterdam, pp. 221–230.

    Google Scholar 

  7. Bopp, L.H., A.M. Chakrabarty, and H.L. Ehrlich (1983) Plasmid-determined resistance to Cr(VI) and reduction of Cr(VI) to Cr(III). J. Bacteriol. 155:1105–1109.

    PubMed  CAS  Google Scholar 

  8. Bragg, P.D., and D.J. Rainnie (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20:883–889.

    Article  PubMed  CAS  Google Scholar 

  9. Bridges, K., A. Kidson, E.J.L. Lowbury, and M.D. Wilkins (1979) Gentamicin- and silver-resistant Pseudomonas in a burns unit. Brit. Med. J. 1:446–449.

    Article  PubMed  CAS  Google Scholar 

  10. Brinkman, F.E., G.J. Olson, and W.P. Iverson (1982) The production and fate of volatile molecular species in the environment: Metals and metalloids. In Atmospheric Chemistry. Dahlem Konferenzen, E.D. Goldberg, ed. Springer-Verlag, Berlin, pp. 231–249.

    Chapter  Google Scholar 

  11. Brown, N.L., S.J. Ford, R.D. Pridmore, and D.C. Fritzinger (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22:4089–4095.

    Article  PubMed  CAS  Google Scholar 

  12. Clark, D.L., A.A. Weiss, and S. Silver (1977) Mercury and organomercurial resistance determined by plasmids in Pseudomonas. J. Bacteriol. 132:186–196.

    PubMed  CAS  Google Scholar 

  13. Corrigan, A.J., and P.C. Huang (1981) Cellular uptake of cadmium and zinc. Biol. Trace Element Res. 3:197–216.

    Article  CAS  Google Scholar 

  14. Cullen, W.R., B.C. McBride, and A.W. Pickett (1979) The transformation of arsenicals by Candida humicola. Can. J. Microbiol. 25:1201–1205.

    Article  PubMed  CAS  Google Scholar 

  15. Edwards, T., and B.C. McBride (1975) Biosynthesis and degradation of methylmercury in human faeces. Nature 253:462–463.

    Article  CAS  Google Scholar 

  16. Foster, T.J., H. Nakahara, A.A. Weiss, and S. Silver (1979) Transposon A-generated mutations in the mercuric resistance genes of plasmid R100–1. J. Bacteriol. 140:167–181.

    PubMed  CAS  Google Scholar 

  17. Fox, B., and C.T. Walsh (1982) Mercuric reductase: Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction active sulfide. J. Biol. Chem. 257:2498–2503.

    PubMed  CAS  Google Scholar 

  18. Fox, Jr. C.L. (1968) Silver sulfadiazine. A new topical for Pseudomonas in burns. Arch. Surg. 96:184–188.

    Article  PubMed  Google Scholar 

  19. Fox, Jr., C.L., and S.M. Modak (1974) Mechanism of silver sulfadiazine action on burn wound infections.. Antimicrob. Agents Chemother. 5:582–588.

    Article  PubMed  CAS  Google Scholar 

  20. Friello, D.A., and A.M. Chakrabarty (1980) Transposable mercury resistance in Pseudomonas putida. In Plasmids and Transposons: Environmental Effects and Maintenance Mechanisms, C. Suttard and K.R. Rozee, eds. Academic Press, New York, pp. 249–260.

    Google Scholar 

  21. Furukawa, K., T. Suzuki, and K. Tonomura (1969) Decomposition of organic mercurial compounds by mercury-resistant bacteria. Agric. Biol. Chem. 33:128–130.

    Article  CAS  Google Scholar 

  22. Furukawa, K., and K. Tonomura (1971) Enzyme system involved in the decomposition of phenyl mercuric acetate by mercury-resistant Pseudomonas. Agric. Biol. Chem. 35:604–610.

    Article  CAS  Google Scholar 

  23. Furukawa, K., and K. Tonomura (1972) Metallic mercury-releasing enzyme in mercury-resistant Pseudomonas. Agric. Biol. Chem. 36:217–226.

    Article  CAS  Google Scholar 

  24. Gardner, P., D.H. Smith, H. Beer, and R.C. Moellering Jr. (1969) Recovery of resistance (R) factors from a drug-free community. Lancet 2:774–776.

    Article  PubMed  CAS  Google Scholar 

  25. Groves, D.J., and F.E. Young (1975) Epidemiology of antibiotic and heavy metal resistance in bacteria: Resistance patterns in Staphylococci isolated from populations not known to be exposed to heavy metals. Antimicrob. Agents Chemother. 7:614–621.

    Article  PubMed  CAS  Google Scholar 

  26. Halbach, S., and T.W. Clarkson (1978) Enzymatic oxidation of mercury vapor by erythrocytes. Biochim. Biophys. Acta 523:522–531.

    Article  PubMed  CAS  Google Scholar 

  27. Hailas, L.E., and J.J. Cooney (1981) Tin and tin-resistant microorganisms in Chesapeake Bay. Appl. Env. Microbiol. 41:446–471.

    Google Scholar 

  28. Hallas, L.E., J.C. Means, and J.J. Cooney (1982) Methylation of tin by estuarine microorganisms. Science 215:1505–1507.

    Article  PubMed  CAS  Google Scholar 

  29. Hamdy, M.K., and O.R. Noyes (1975) Formation of methylmercury by bacteria. Appl. Microbiol. 30:424–432.

    PubMed  CAS  Google Scholar 

  30. Hedges, R.W., and S. Baumberg (1973) Resistance to arsenic compounds conferred by a plasmid transmissable between strains of Escherichia coli. J. Bacteriol. 115:459–460.

    PubMed  CAS  Google Scholar 

  31. Hendry, A.T., and L.O. Stewart (1979) Silver-resistant entero-bacteriaceae from hospital patients. Can. J. Microbiol. 25:915–921.

    Article  PubMed  CAS  Google Scholar 

  32. Holm, H.W., and M.F. Cox (1975) Transformation of elemental mercury by bacteria. Appl. Microbiol. 29:491–494.

    PubMed  CAS  Google Scholar 

  33. Ishihara, M., Y. Kamio, and Y. Terawaki (1978) Cupric ion resistance as a new marker of a temperature sensitive R plasmid, Rtsl in Escherichia coli. Biochem. Biophys. Res. Comm. 82:74–80.

    Article  PubMed  CAS  Google Scholar 

  34. Izaki, K. (1981) Enzymatic reduction of mercurous and mercuric ions in Bacillus cereus. Can. J. Microbiol. 27:192–197.

    Article  PubMed  CAS  Google Scholar 

  35. Izaki, K., Y. Tashiro, and T. Funaba (1974) Mechanism of mercuric chloride resistance in microorganisms. III. Purification and properties of a mercuric ion reducing enzyme from Escherichia coli bearing R factor. J. Biochem. 75:591–599.

    PubMed  CAS  Google Scholar 

  36. Jensen, S., and A. Jernelöv (1969) Biological methylation of mercury in aquatic organisms. Nature 223:753–754.

    Article  PubMed  CAS  Google Scholar 

  37. Komura, I., T. Funaba, and K. Izaki (1971) Mechanism of mercuric chloride resistance in microorganisms. II. NADPH-depend-ent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain of Escherichia coli. J. Biochem. 70:895–901.

    PubMed  CAS  Google Scholar 

  38. Krauth-Siegel, R.L., R. Blatterspiel, M. Saleh, E. Schütz, R.H. Schirmer, and R. Untucht-Grau (1982) Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur. J. Biochem. 121:259–267.

    Article  PubMed  CAS  Google Scholar 

  39. Maré, I.J. (1968) Incidence of R factors among gram negative bacteria in drug-free human and animal communities. Nature 220:1046–1047.

    Article  PubMed  Google Scholar 

  40. McBride, B.C., and T.L. Edwards (1977) Role of the methanogenic bacteria in the alkylation of arsenic and mercury. In ERDA Symposium Series #42, pp. 1–19.

    Google Scholar 

  41. McHugh, G.L., R.C. Moellering, C.C. Hopkins, and M.N. Schwartz (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1:235–240.

    Article  PubMed  CAS  Google Scholar 

  42. McMurry, L., R.E. Petrucci Jr., and S.B. Levy (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci., USA 77:3974–3977.

    Article  PubMed  CAS  Google Scholar 

  43. Mobley, H.L.T., and B.P. Rosen (1982) Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc. Natl. Acad. Sci., USA 79:6119–6122.

    Article  PubMed  CAS  Google Scholar 

  44. Nakahara, H., T. Ishikawa, Y. Sarai, and I. Kondo (1977) Distribution of resistances to metals and antibiotics of Staphylococcal strains in Japan. Zentralb. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1 Abt. Prig. A 237:470–476.

    CAS  Google Scholar 

  45. Nakahara, H., T. Ishikawa, Y. Sarai, I. Kondo, H. Kozukue, and S. Silver (1977) Linkage of mercury, cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl. Envir. Microbiol. 33:975–976.

    CAS  Google Scholar 

  46. Nakahara, H., and H. Kozukue (1982) Volatilization of mercury determined by plasmids in E. coli isolated from an aquatic environment. In Drug Resistance in Bacteria: Genetics, Biochemistry, and Molecular Biology, S. Mitsuhashi, ed. Japanese Scientific Societies Press, Tokyo, pp. 337–340.

    Google Scholar 

  47. Nakahara, H., S. Silver, T. Miki, and R.H. Rownd (1979) Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J. Bacteriol. 140:161–166.

    PubMed  CAS  Google Scholar 

  48. Nelson, Jr., J.D., and R.R. Colwell (1975) The ecology of mercury-resistant bacteria in Chesapeake Bay. Microb. Ecol. 1:191–218.

    Article  CAS  Google Scholar 

  49. NiBhriain, N., S. Silver, and T.J. Foster (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J. Bacteriol. 155:690–703.

    CAS  Google Scholar 

  50. Novick, R.P., E. Murphy, T.J. Gryczan, E. Baron, and I. Edelman (1979) Penicillinase plasmids of Staphylococcus aureus: Restriction-deletion maps. Plasmid 2:109–129.

    Article  PubMed  CAS  Google Scholar 

  51. Novick, R.P., and C. Roth (1968) Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95:1335–1342.

    PubMed  CAS  Google Scholar 

  52. Olson, B.H., T. Barkay, and R.R. Colwell (1979) Role of plasmids in mercury transformation by bacteria isolated from aquatic environment. Appl. Env. Microbiol. 38:478–485.

    CAS  Google Scholar 

  53. Olson, G.J., W.P. Iverson, and F.E. Brinckman (1981) Volatilization of mercury by Thiobacillus ferrooxidans. Current Microbiol. 5:115–118.

    Article  CAS  Google Scholar 

  54. Olson, G.J., F.D. Porter, J. Rubinstein, and S. Silver (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J. Bacteriol. 151:1230–1236.

    PubMed  CAS  Google Scholar 

  55. Osborne, F.H., and H.L. Ehrlich (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J. Appl. Bacteriol. 41:295–305.

    Article  PubMed  CAS  Google Scholar 

  56. Parris, G.E., and F.E. Brinckman (1976) Reactions which relate to environmental mobility of arsenic and antimony. II. Oxidation of trimethylarsine and trimethylstibine. Env. Sci. Technol. 10:1128–1134.

    Article  CAS  Google Scholar 

  57. Perry, R.D., and S. Silver (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J. Bacteriol. 150:973–976.

    PubMed  CAS  Google Scholar 

  58. Phillips, S.E., and M.L. Taylor (1976) Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Env. Microbiol. 32:392–399.

    CAS  Google Scholar 

  59. Pickett, A.W., B.C. McBride, W.R. Cullen, and H. Manji (1981) The reduction of trimethylarsine by Candida humicola. Can. J. Microbiol. 27:773–778.

    Article  PubMed  CAS  Google Scholar 

  60. Porter, F.D., C. Ong, S. Silver, and H. Nakahara (1982) Selection for mercurial resistance in hospital settings. Anti-microb. Agents Chemother. 22:852–858.

    Article  CAS  Google Scholar 

  61. Radford, A.J., J. Oliver, W.J. Kelly, and D.C. Reanney (1981) Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. J. Bacteriol. 147:1110–1112.

    PubMed  CAS  Google Scholar 

  62. Ridley, W.P., L.J. Dizikes, and J.M. Wood (1977) Biomethylation of toxic elements in the environment. Science 197:329–332.

    Article  PubMed  CAS  Google Scholar 

  63. Rinderle, S.J., J.E. Booth, and J.W. Williams (1983) Mercuric reductase from R-plasmid NR1: Characterization and mechanistic study. Biochem. 22:869–876.

    Article  CAS  Google Scholar 

  64. Schottel, J.L. (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253:4341–4349.

    PubMed  CAS  Google Scholar 

  65. Schottel, J., A. Mandai, D. Clark, S. Silver, and R.W. Hedges (1974) Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337.

    Article  PubMed  CAS  Google Scholar 

  66. Schreurs, W.J.A., and H. Rosenberg (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152:7–13.

    PubMed  CAS  Google Scholar 

  67. Silver, S. (1978) Transport of cations and anions. In Bacterial Transport, B.P. Rosen, ed. Marcel Dekker, Inc., New York, pp. 221–324.

    Google Scholar 

  68. Silver, S. (1981) Mechanisms of bacterial resistances to toxic heavy metals: Arsenic, antimony, silver, cadmium and mercury. In Environmental Speciation and Monitoring Needs for Trace Metal-Containing Substances from Energy-Related Processes, F.E. Brinckman and R.H. Fish, eds. Special Publ. 618. National Bureau of Standards, Washington, D.C., pp. 301–314.

    Google Scholar 

  69. Silver, S. (1981) Mechanisms of plasmid-determined heavy metal resistances. In Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids, S.B. Levy, R.C. Clowes, and E.L. Koenig, eds. Plenum Press, New York, pp. 179–189.

    Chapter  Google Scholar 

  70. Silver, S., (1983) Bacterial transformations of and resistances to heavy metals. In Changing Metal Cycles and Human Health, Dahlem Konferenzen, J.O. Nriagu, ed. Springer-Verlag, Berlin (in press).

    Google Scholar 

  71. Silver, S., K. Budd, K.M. Leahy, W.V. Shaw, K. Hammond, R.P. Novick, G.R. Willsky, M.H. Malamy, and H. Rosenberg (1981) Inducible plasmid-determined resistance to arsenate, arsenite and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146:983–996.

    PubMed  CAS  Google Scholar 

  72. Silver, S., and D. Keach (1982) Energy-dependent arsenate efflux: The mechanism of plasmid-mediated resistance. Proc. Natl. Acad. Sci., USA, 79:6114–6118.

    Article  PubMed  CAS  Google Scholar 

  73. Silver, S., and T.G. Kinscherf (1982) Genetic and biochemical bases for microbial transformations and detoxification of mercury and mercurial compounds. In Biodegradation and Detoxification of Environmental Pollutants, A.M. Chakrabarty, ed. CRC Press, Boca Raton, FL, pp. 85–103.

    Google Scholar 

  74. Silver, S., R.D. Perry, Z. Tynecka, and T.G. Kinscherf (1982) Mechanisms of bacterial resistances to the toxic heavy metals antimony, arsenic, mercury and silver. In Drug Resistance in Bacteria: Genetics, Biochemistry, and Molecular Biology, S. Mitsuhashi, ed. Japan Scientific Societies Press, Tokyo, pp. 347–361.

    Google Scholar 

  75. Smith, D.H. (1967) R factors mediate resistances to mercury, nickel, and cobalt. Science 156:1114–1116.

    Article  PubMed  CAS  Google Scholar 

  76. Smith, H.W. (1978) Arsenic resistance in Enterobacteria: Its transmission by conjugation and by phage. J. Gen. Microbiol. 109:49–56.

    Article  PubMed  CAS  Google Scholar 

  77. Summers, A.O., G.A. Jacoby, M.N. Swartz, G. McHugh, and L. Sutton (1978) Metal cation and oxyanion resistances in plasmids of gram-negative bacteria. In Microbiology 1978, D. Schlessinger, ed. American Society for Microbiology, Washington, D.C., pp. 128–131.

    Google Scholar 

  78. Summers, A.O., and S. Silver (1972) Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112:1128–1136.

    Google Scholar 

  79. Summers, A.O., and S. Silver (1978) Microbial transformation of metals. Ann. Rev. Microbiol. 32:637–672.

    Article  CAS  Google Scholar 

  80. Tetaz, T.J., and R.K.J. Luke (1983) Plasmid-controlled resistance to copper in Escherichia coli. J. Bacteriol. 154:1263–1268.

    PubMed  CAS  Google Scholar 

  81. Tezuka, T., and K. Tonomura (1976) Purification and properties of an enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62 strain. I. Splitting enzyme 1. J. Biochem. 80:79–87.

    PubMed  CAS  Google Scholar 

  82. Tezuka, T., and K. Tonomura (1978) Purification and properties of a second enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62. J. Bacteriol. 135:138–143.

    PubMed  CAS  Google Scholar 

  83. Timoney, J.F., J. Port, J. Giles, and J. Spanier (1978) Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Appl. Env. Microbiol. 36:465–472.

    CAS  Google Scholar 

  84. Tonomura, K., and F. Kanzaki (1969) The reductive decomposition of organic mercurials by cell-free extract of a mercury-resistant pseudomonad. Biochim. Biophys. Acta 184:227–229.

    Article  PubMed  CAS  Google Scholar 

  85. Tynecka, Z., Z. Gos, and J. Zajac (1981) Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147:313–319.

    PubMed  CAS  Google Scholar 

  86. Tynecka, Z., Z. Gos, and J. Zajac (1981) Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J. Bacteriol. 147:305–312.

    PubMed  CAS  Google Scholar 

  87. Vonk, J.W., and A.K. Sijpesteijn (1973) Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Anton. vanLeeuwenhoek J. Microbiol. Serol. 39:505–513.

    CAS  Google Scholar 

  88. Weiss, A.A., S.D. Murphy, and S. Silver (1977) Mercury and or-ganomercurial resistances determined by plasmids in Staphylococcus aureus. J. Bacteriol. 132:197–208.

    PubMed  CAS  Google Scholar 

  89. Weiss, A.A., S. Silver, and T.G. Kinscherf (1978) Cation transport alteration associated with plasmid-determined resistance to cadmium in Staphylococcus aureus. Antimicrob. Agents Chemother. 14:856–865.

    Article  PubMed  CAS  Google Scholar 

  90. Weiss, A.A., J.L. Schottel, D.L. Clark, R.G. Beller, and S. Silver (1978) Mercury and organomercurial resistance with enteric, staphylococcal, and pseudomonad plasmids. In Microbiology 1978, D. Schlessinger, ed. American Society for Microbiology, Washington, D.C., pp. 121–124.

    Google Scholar 

  91. Williams, Jr., C.H., L.D. Arscott, and G.E. Schulz (1982) Amino acid sequence homology between pig heart lipoamide dehydrogenase and human erythrocyte glutathione reductase. Proc. Natl. Acad. Sci., USA 79:2199–2201.

    Article  PubMed  CAS  Google Scholar 

  92. Witte, W., N. Van Dip, and R. Hummel (1980) Resistenz gegen quecksilber und cadmium bei Staphylococcus aureus unterschiedlicher okologischer herkunft. Z. Allg. Mikrobiol. 20:517–521.

    Article  PubMed  CAS  Google Scholar 

  93. Wood, J.M., A. Cheh, L.J. Dizikes, W.P. Ridley, S. Rakow, and J.R. Lakowicz (1978) Mechanisms for the biomethylation of metals and metalloids. Fed. Proc. 37:16–21.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Silver, S., Misra, T.K. (1984). Bacterial Transformations of and Resistances to Heavy Metals. In: Omenn, G.S., et al. Genetic Control of Environmental Pollutants. Basic Life Sciences, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4715-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4715-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4717-0

  • Online ISBN: 978-1-4684-4715-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics