Manipulation of Methanotrophs

  • Mary E. Lidstrom
  • Ann E. Wopat
  • David N. Nunn
  • Aresa E. Toukdarian
Part of the Basic Life Sciences book series (BLSC, volume 28)


Recent studies of methane-oxidizing bacteria (methanotrophs) have demonstrated their ability to oxidize a variety of hydrocarbons (1). This capability has prompted much study into the possible use of these bacteria as biocatalysts, and a number of patents have appeared with this goal in mind. Although methanotrophs can clearly transform a variety of hydrocarbons under laboratory conditions, the significance of these capabilities in the biosphere is uncertain. These bacteria are ubiquitous, and if they carry out these oxidations in natural environments they may make significant contributions to hydrocarbon degradation. In addition, if their unique capabilities could be harnessed, it is possible they could be used for developing detoxification processes.


Benzyl Alcohol Yersinia Enterocolitica Hydrocarbon Degradation Methanotrophic Bacterium Oxide Styrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anthony, C. (1982) The Biochemistry of Methylotrophs. London, Academic Press, p. 431.Google Scholar
  2. 2.
    Beringer, J.E., J.L. Beyon, A.V. Buchanan-Wollaston, and A.W.B. Johnson (1978) Transfer of the drug resistance transposon Tn5 to Rhizobium. Nature, London 276:633–634.CrossRefGoogle Scholar
  3. 3.
    Dalton, H. (1977) Ammonia oxidation by the methane oxidizing bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol. 114: 273–279.CrossRefGoogle Scholar
  4. 4.
    Dalton, H. (1980) Transformations by methane mono-oxygenases. In Hydrocarbons in Biotechnology, D.E.F. Harrison, I.J. Higgins, and R.J. Watkinson, eds. London, Heyden, pp. 85–97.Google Scholar
  5. 5.
    Eccleston, M., and D.P. Kelly (1973) Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capulatus. J. Gen. Microbiol. 75:211–221.PubMedCrossRefGoogle Scholar
  6. 6.
    Figurski, D., and D.R. Helinski (1979) Replication of an origin-containing derivative of the plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci., USA 76:1648–1652.PubMedCrossRefGoogle Scholar
  7. 7.
    Harwood, J.H., E. Williams, and B.W. Bainbridge (1972) Mutation of the methane oxidizing bacterium, Methylococcus capsulatus. J. Appl. Bacteriol. 35:99–108.PubMedCrossRefGoogle Scholar
  8. 8.
    Higgins, I.J., D.J. Best, R.C. Hammond, and D. Scott (1981) Methane-oxidizing microorganisms. Microbiol. Rev. 45:556–590.PubMedGoogle Scholar
  9. 9.
    Knauf, V.C., and E.W. Nester (1982) Wide host range cloning vectors: A cosmid clone bank of Agrobacterium Ti plasmids. Plasmid 8:45–54.PubMedCrossRefGoogle Scholar
  10. 10..
    Lidstrom-O’Connor, M.E., G.L. Fulton, and A.E. Wopat (1983) Methylobacterium ethanolicum: A syntrophic association of two methylotrophic bacteria. J. Gen. Microbiol. Vol. 129 (in press).Google Scholar
  11. 11.
    Miller, J. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratories, New York, p. 466.Google Scholar
  12. 12.
    Portnoy, D.A., S.L. Moseley, and S. Falkow (1981) Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Inf. Imm. 31:775–782.Google Scholar
  13. 13.
    Ruvkun, G.B., and F.M. Ausubel (1980) Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci., USA 77:191–195.PubMedCrossRefGoogle Scholar
  14. 14.
    Ruvkun, G.B., and F.M. Ausubel (1981) A general method for site-directed mutagenesis in prokaryotes. Nature, London 289:85–88.CrossRefGoogle Scholar
  15. 15.
    Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–571.PubMedCrossRefGoogle Scholar
  16. 16.
    Tyutikov, F.M., I.A. Bespalova, B.A. Rebentish, N.N. Aleksan-drushkina, and A.S. Krivisky (1980) Bacteriophages of methano-trophic bacteria. J. Bacteriol. 144:375–381.PubMedGoogle Scholar
  17. 17.
    Warner, P.J., I.J. Higgins, and J.W. Drozd (1980) Conjugative transfer of antibiotic resistance to methylotrophic bacteria. FEMS Microbiol. Lett. 7:181–185.CrossRefGoogle Scholar
  18. 18.
    Whittenbury, R., and H. Dalton (1981) The methylotrophic bacteria. In The Prokaryotes, M.P. Starr, H. Stolp, H.G. Truper, A. Balows, and H.G. Schlegel, eds. Springer-Verlag, New York, Vol. 1, pp. 894–902.Google Scholar
  19. 19.
    Williams, E., and B.W. Bainbridge (1971) Genetic transformation in Methylococcus capsulatus. J. Appl. Bact. 34:683–687.CrossRefGoogle Scholar
  20. 20.
    Williams, E., M.A. Shimmin, and B.W. Bainbridge (1977) Mutation in the obligate methylotrophs Methylococcus capsulatus and Methylomonas albus. FEMS Microbiol. Lett. 2:293–296.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Mary E. Lidstrom
    • 1
  • Ann E. Wopat
    • 1
  • David N. Nunn
    • 1
  • Aresa E. Toukdarian
    • 1
  1. 1.Department of Microbiology, SC-42University of WashingtonSeattleUSA

Personalised recommendations