Capabilities of Microorganisms (and Microbiologists)

  • Arnold L. Demain
Part of the Basic Life Sciences book series (BLSC, volume 28)


Up to this point in the conference, I have absorbed several general impressions from the previous speakers. They involve the difficulties of studying microbial ecology, the importance of microbial survival, and the promise of microbial genetics in solving some of the problems of environmental pollution. These bring to mind several quotations, which I feel are relevant to these topics:

“Ecology is physiology under the worst possible conditions.” — Thomas D. Brock

“We may rest assured that as green plants and animals disappear one by one from the face of the globe, some of the fungi will always be present to dispose of the last remains.” — B.O. Dodge

“...when you have mutants, you are better off than when you don’t.” — Salvador E. Luria


Bacillus Cereus Trichoderma Reesei Ergot Alkaloid Auxotrophic Mutant Benzylpenicillin Acylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tyler, J., and R.K. Finn (1974) Growth rates of a pseudomonad on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl. Microbiol, 28:181–184.PubMedGoogle Scholar
  2. 2.
    Wheelis, M.L. (1975) The genetics of dissimilatory pathways in Pseudomonas. Ann. Rev. Microbiol. 29:505–524.CrossRefGoogle Scholar
  3. 3.
    Gibson, D.T. (1968) Microbial degradation of aromatic compounds. Science 161:1093–1097.CrossRefGoogle Scholar
  4. 4.
    Alexander, M. (1971) Biochemical ecology of microorganisms. Ann. Rev. Microbiol. 25:361–392.CrossRefGoogle Scholar
  5. 5.
    Alexander, M. (1980) Biodegradation of chemicals of environmental concern. Science 211:132–138.CrossRefGoogle Scholar
  6. 6.
    Alexander, M. (1973) Nonbiodegradable and other recalcitrant molecules. Biotechnol. Bioeng. 15:611–647.CrossRefGoogle Scholar
  7. 7.
    Malik, K.A. (1978) Microbial removal of organic sulfur from crude oil and the environment: Some new perspectives. Process Biochem. 13(9):10–13.Google Scholar
  8. 8.
    Bartha, R., and R.M. Atlas (1977) The microbiology of aquatic oil spills. Adv. Appl. Microbiol. 22:225–266.Google Scholar
  9. 9.
    Gutnick, D.L., and E. Rosenberg (1977) Oil tankers and pollution: a microbiological approach. Ann. Rev. Microbiol. 31:379–396.CrossRefGoogle Scholar
  10. 10.
    Friello, D.A., J.R. Mylroie, and A.M. Chakrabarty (1976) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. In Proc. Int. Biodeg. Symp. 3rd 1975, J.M. Sharpley and A.M. Kaplan, eds. Applied Science Publishers Ltd., London, pp. 205–213.Google Scholar
  11. 11.
    Aunstrup, K. (1979) Production, isolation and economics of extracellular enzymes. Appl. Biochem. Bioeng. 2:27–69.Google Scholar
  12. 12.
    Foster, J.W. (1964) Microbes in diplomacy. Grad. J. 6:322–332.Google Scholar
  13. 13.
    Lecadet, M.M., and R. Dedonder (1971) Biogenesis of the crystalline inclusion of Bacillus thuringiensis during sporulation. Eur. J. Biochem. 23:282–294.PubMedCrossRefGoogle Scholar
  14. 14.
    Gutnick, D.L., E.A. Bayer, C. Rubinowitz, O. Pines, Y. Shabtai, S. Goldman, and E. Rosenberg (1981) Emulsan production in Acinetobacter RAG-1. In Advances in Biotechnology. Vol. 3. Fermentation Products. C. Vezina and K. Singh, eds. Pergamon Press, Toronto, pp. 455–459.Google Scholar
  15. 15.
    Davis, M.G., and J.M. Calvo (1977) Relationship between messenger ribonucleic acid and enzyme levels specified by the leucine operon of Escherichia coli K-12. J. Baceteriol. 131:997–1007.Google Scholar
  16. 16.
    Saito, N., and K. Yamamoto (1975) Regulatory factors affecting alpha-amylase production in Bacillus licheniformis. J. Bacteriol. 121:848–856.Google Scholar
  17. 17.
    Newell, S.L., and W.J. Brill (1972) Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation. J. Bacteriol. 111:375–382.PubMedGoogle Scholar
  18. 18.
    Betz, J.L., P.R. Brown, M.J. Smyth, and P.H. Clarke (1974) Evolution in action. Nature 247:261–264.PubMedCrossRefGoogle Scholar
  19. 19.
    Schaeffer, E.J., and C. L. Cooney (1982) Production of maltase by wild type and a constitutive mutant of Saccharomyces Italians. Appl. Environ. Microbiol. 43:75–80.Google Scholar
  20. 20.
    Michels, C.A., and A. Romanowski (1980) Pleiotropic glucose repression-resistant mutation in Saccharomyces carlsbergensis. J. Bacteriol. 143:674–679.Google Scholar
  21. 21.
    Hegeman, G.D., and R.T. Root (1976) The effect of a non-metabolizable analogue on mandelate catabolism. Arch. Microbiol. 110:19–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Shinke, R., K. Aoki, H. Nishira, and S. Yuki (1979) Isolation of a rifampicin-resistant, asporogenous mutant from Bacillus cereus and its high beta-amylase productivity. J. Ferm. Technol. 57:53–55.Google Scholar
  23. 23.
    Haggett, K.D., W.Y. Choi, and N.W. Dunn (1978) Mutants of Cellulomonas which produce increased levels of beta-glucosidase. Eur. J. Appl. Microbiol. Biotechnol. 6:189–191.CrossRefGoogle Scholar
  24. 24.
    Horiuchi, T., S. Horiuchi, and A. Novick (1963) The genetic basis of hyper-synthesis of beta-galactosidase. Genetics 48:157–169.PubMedGoogle Scholar
  25. 25.
    Rigby, P.W.J., B.D. Burleigh, and B.S. Hartley (1974) Gene duplication in experimental enzyme evolution. Nature 251:200–204.PubMedCrossRefGoogle Scholar
  26. 26.
    Shen, Y.-Q., G.-X. Xia, C.-J. Lou, K.-R. Xu, and R.-S. Jiao (1980) Studies on microbial production of long-chain dicarboxylic acids from n-alkane. 4. Production of long chain dicarboxylic acid by conversion with resting Candida yeast cells. Acta Phytophysiol. Sinica 6:29–35.Google Scholar
  27. 27.
    Wigmore, G.J., and D.W. Ribbons (1980) p-Cymene pathway in Pseudomonas putIda: selective enrichment of defective mutants by using halogenated substrate analogs. J. Bacteriol. 143:816–824.PubMedGoogle Scholar
  28. 28.
    Sonoyama, T., H. Tani, K. Matsuda, B. Kageyama, M. Tanimoto, K. Kobayashi, S. Yagi, H. Kyotani, and K. Mitsushima (1982) Production of 2-keto-L-gulonic acid from D-glucose by two-stage fermentation. Appl. Environ. Microbiol. 43:1064–1069.PubMedGoogle Scholar
  29. 29.
    Kondo, E., and E. Masuo (1961) “Pseudo-crystallofermentation” of steroid: A new process for preparing prednisolone by a microorganism. J. Gen. Appl. Microbiol. 7:113–117.CrossRefGoogle Scholar
  30. 30.
    Buckland, B.C., P. Dunnill, and M.D. Lilly (1975) The enzymatic transformation of water-insoluble reactants in non-aqueous solvents. Conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. Biotechnol. Bioeng. 17:815–826.CrossRefGoogle Scholar
  31. 31.
    Schwartz, R.D., and C.J. McCoy (1977) Epoxidation of 1,7-octa-diene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane. Appl. Environ. Microbiol. 34:47–49.PubMedGoogle Scholar
  32. 32.
    Omata, T., T. Iida, A. Tanaka, and S. Fukui (1979) Transformation of steroids by gel-entrapped Nocardia rhodocrous cells in organic solvent. Eur. J. Appl. Microbiol. Biotechnol. 8:143–155.CrossRefGoogle Scholar
  33. 33.
    Fukui, S., and A. Tanaka (1982) Immobilized microbial cells. Ann Rev. Microbiol. 36:145–172.CrossRefGoogle Scholar
  34. 34.
    Sato, T., Y. Nishida, T. Tosa, and I. Chibata (1979) Immobilization of Escherichia coli cells containing aspartase activity with kappa-carrageenan. Enzymic properties and application for L-aspartic acid production. Biochim. Biophys. Acta 570:179–186.PubMedCrossRefGoogle Scholar
  35. 35.
    Messing, R.A. (1980) Immobilized microbes. Ann. Rpts. Ferm. Proc. 4:105–121.Google Scholar
  36. 36.
    Mortlock, R.P. (1982) Metabolic acquisitions through laboratory selection. Ann. Rev. Microbiol. 36:259–284.CrossRefGoogle Scholar
  37. 37.
    Langridge, J. (1969) Mutations conferring quantitative and qualitative increases in beta-galactosidase activity in Escherichia coli. Molec. Gen. Genet. 105:74–83.PubMedCrossRefGoogle Scholar
  38. 38.
    Coats, J.H., and E.W. Nester (1967) Regulation reversal mutation: characterization of end product-activated mutants of Bacillus subtilis. J. Biol. Chem. 242:4948–4955.PubMedGoogle Scholar
  39. 39.
    Fincham, J.R.S. (1973) Genetic control of enzyme-protein structure and synthesis in fungi. In Genetics of Industrial Microorganisms: Actinomycetes and Fungi, Z. Vanek, Z. Hostalek, and J. Cudlin, eds. Academia, Prague, pp. 97–108.Google Scholar
  40. 40.
    Sirotnak, F.M., W.A. Williams, and S.L. Hachtel (1969) Increased dihydrofolate reductase synthesis in Diplococcus pneumoniae following translatable alteration of the structural gene. II. Individual and dual-effects on the properties and rate of synthesis of the enzyme. Genetics 61:313–326.PubMedGoogle Scholar
  41. 41.
    Cuskey, S.M., D.H.J. Schamhart, T. Chase, Jr., B.S. Montene-court, and D.E. Eveleigh (1980) Screening for beta-glucosidase mutants of Trichoderma reesei with resistance to end-product inhibition. Devel. Ind. Micro. 21:471–480.Google Scholar
  42. 42.
    Kellogg, S.T., D.K. Chatterjee, and A.M. Chakrabarty (1981) Plasmid assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135.PubMedCrossRefGoogle Scholar
  43. 43.
    Chatterjee, D.K., J.J. Kilbane, and A.M. Chakrabarty (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Appl. Envir. Microbiol. 44:514–516.Google Scholar
  44. 44.
    Chakrabarty, A.M. (1978) Molecular mechanisms in the biodegradation of environmental pollutants. ASM News 44:687–690.Google Scholar
  45. 45.
    Kuhn, J., and R.L. Somerville (1971) Mutant straints of Escherichia coli K12 that use D-amino acids. Proc. Natl. Acad. Sci., USA 68:2484–2487.PubMedCrossRefGoogle Scholar
  46. 46.
    Clayton, R.K., and C. Smith (1960) Rhodopseudomonas spheroides: High catalase and blue-green double mutants. Biochem. Biophys. Res. Commun. 3:143–145.PubMedCrossRefGoogle Scholar
  47. 47.
    Crusberg, T.C., R. Leary, and R.L. Kisliuk (1970) Properties of thymidylate synthetase from dichloromethotrexate-resistant Lactobacillus casei. J. Biol. Chem. 245:5292–5296.PubMedGoogle Scholar
  48. 48.
    Nakao, Y., M. Suzuki, M. Kuno, and K. Maejima (1973) Production of alkaline protease from n-paraffins by a kabicidin resistant mutant strain of Fusarium sp. Agric. Biol. Chem. 37:1223–1224.CrossRefGoogle Scholar
  49. 49.
    Ford, S.R., and R.L. Switzer (1975) Stimulation of derepressed enzyme synthesis in bacteria by growth on sublethal conentrations of chloramphenicol. Antimicrob. Agents Chemother. 7:555–563.PubMedCrossRefGoogle Scholar
  50. 50.
    Pardee, A.B., E.J. Benz, Jr., D.A. St. Peter, J.N. Krieger, M. Meuth, and H.W. Trieshmann, Jr. (1971) Hyperproduction and purification of nicotinamide deamidase, a micro-constitutive enzyme of Escherichia coli. J. Biol. Chem. 246:6792–6796.PubMedGoogle Scholar
  51. 51.
    Legrain, C., V. Stalon, N. Glansdorff, D. Gigot, A. Pierard, and M. Crabeel (1976) Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12. J. Bacteriol. 128:39–48.PubMedGoogle Scholar
  52. 52.
    Hasunuma, K. (1977) Control of the production of orthophosphate repressible extracellular enzymes in Neurospora crassa. Molec. Gen. Genet. 151:5–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Erokhina, L.I., I.M. Nesterova, and S.P. Istoshina (1976) Selection of Aspergillus awamori, a producer of acid proteinase, and the role of morphological and biochemical mutants and prototrophic revertants in the selection of active strains. Genetika 12:135–141.Google Scholar
  54. 54.
    Borum, P.R., and K.J. Monty (1976) Regulatory mutants and control of cysteine biosynthetic enzymes in Salmonella typhimurium. J. Bacteriol. 125:94–101.Google Scholar
  55. 55.
    Aronson, A.I., N. Angelo, and S.C. Holt (1971) Regulation of extracellular protease production in Bacillus cereus T: characterization of mutants producing altered amounts of protease. J. Bacteriol. 106:1016–1025.PubMedGoogle Scholar
  56. 56.
    Aunstrup, K. (1981) Proteinases. In Economic Microbiology 5. Microbial Enzymes and Bioconversions, A.H. Rose, ed. Academic Press, New York, pp. 49–114.Google Scholar
  57. 57.
    Shinke, R., K. Aoki, H. Nishiva, and S. Yuki (1981) Beta-amylase production by a rifampicin-resistant, asporogenous mutant of Bacillus cereus and its sporogenous revertant. In Advances in Biotechnology 3. Fermentation Products, C. Vezina and K. Singh, eds. Pergamon Press, Toronto, pp. 307–312.Google Scholar
  58. 58.
    Sebold, M., and M. Cassier (1969) Sporulation and toxigenicity in mutant strains of Clostridium perfringens. Spores 4:306–316.Google Scholar
  59. 59.
    Ito, J., and J. Spizizen (1973) Genetic studies of catabolite repression insensitive sporulation mutants of Bacillus subtilis. In Regulation de la Sporulation Microbienne, J.P. Aubert, P. Schaeffer, and J. Szulmjaster, eds. Editions du Centre National de la Recherche Scientifique, Paris, pp. 81–82.Google Scholar
  60. 60.
    Levisohn, S., and A.I. Aronson (1967) Regulation of extracellular protease production in Bacillus cereus. J. Bacteriol. 93:1023–1030.PubMedGoogle Scholar
  61. 61.
    Kunst, F., M. Pascal, J. Lepesant-Kejzlarova, J.-A. Lepesant, A. Billault, and R. Dedonder (1974) Pleiotropic mutations affecting sporulation conditions and the synthesis of extracellular enzymes in Bacillus subtilis 168. Biochimie 56:1481–1489.PubMedCrossRefGoogle Scholar
  62. 62.
    Nevalainen, K.M.H., E.T. Palva, and M.J. Bailey (1980) A high cellulase-producing mutant strain of Trichoderma reesei. Enz. Microb. Technol. 2:59–60.CrossRefGoogle Scholar
  63. 63.
    Higerd, R.B., J.A. Hoch, and J. Spizizen (1972) Hyperprotease-producing mutant of Bacillus subtilis. J. Bacteriol. 112:1026–1028.PubMedGoogle Scholar
  64. 64.
    Nasuno, S., and T. Ohara (1971) Comparison of alkaline proteinase from hyperproductive mutants and parent strain of Aspergillus sojae. Agric. Biol. Chem. 35:836–842.CrossRefGoogle Scholar
  65. 65.
    Cohen, B.L. (1972) Ammonium repression of extracellular protease in Aspergillus nidulans. J. Gen. Microbiol. 71:293–299.CrossRefGoogle Scholar
  66. 66.
    Hsu, D.J., and R.H. Vaughn (1969) Production and catabolite repression of the constitutive polygalacturonic acid trans-eliminase of Aeromonas liquefaciens. J. Bacteriol. 98:172–181.Google Scholar
  67. 67.
    Montenecourt, B.S., S.-C. Kuo, and J.O. Lampen (1973) Saccharo-myces mutants with invertase formation resistant to repression by hexoses. J. Bacteriol. 114:233–238.PubMedGoogle Scholar
  68. 68.
    Schurr, A., and E. Yagil (1971) Regulation and characterization of acid and alkaline phosphatase in yeast. J. Gen. Microbiol. 65:291–303.PubMedCrossRefGoogle Scholar
  69. 69.
    Gray, G.G., R.M. Berka, and M.L. Vasil (1982) Phospholipase C regulatory mutation of Pseudomonas aeruginosa that results in constitutive synthesis of several phosphate-repressible proteins. J. Bacteriol. 150:1221–1226.PubMedGoogle Scholar
  70. 70.
    Palva, I. (1982) Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene 19:81–87.Google Scholar
  71. 71.
    Preiss, J., M. Mazelis, and E. Greenberg (1982) Cloning of the aspartate-beta-semialdehyde dehydrogenase structural gene from Escherichia coli K12. Curr. Microbiol. 7:263–268.CrossRefGoogle Scholar
  72. 72.
    Mayer, J., J. Collins, and F. Wagner (1980) Cloning of the penicillin G-acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids. Enz. Eng. 5:61–73.CrossRefGoogle Scholar
  73. 73.
    Deutch, A.H., C.J. Smith, K.E. Rushlow, and P.J. Kretschmer (1982) Escherichia coli delta’-pyrroline-5-carboxylate reductase: gene sequence, protein overproduction and purification. Nucl. Acid Res. 10:7701–7714.CrossRefGoogle Scholar
  74. 74.
    Panasenko, S.M., J.R. Cameron, R.W. Davis, and I.R. Lehman (1977) Five-hundred-fold overproduction of DNA ligase after induction of a hybrid lambda lysogen constructed in vitro. Science 196:188–189.PubMedCrossRefGoogle Scholar
  75. 75.
    Kelley, W.S., K. Chalmers, and N.E. Murray (1977) Isolation and characterization of a XpolA transducing phage. Proc. Natl. Acad. Sci., USA 74:5632–5636.PubMedCrossRefGoogle Scholar
  76. 76.
    Hayzer, D.J., and T. Leisinger (1980) The gene-enzyme relationships of proline biosynthesis in Escherichia coli. J. Gen. Microbiol. 118:287–293.Google Scholar
  77. 77.
    Raetz, C.R.H., T.J. Larson, and W. Dowhan (1977) Gene cloning for the isolation of enzymes of membrane lipid synthesis: Phosphatidylserine synthase overproduction in Escherichia coli. Proc. Natl. Acad. Sci., USA 74:1412–1416.PubMedCrossRefGoogle Scholar
  78. 78.
    Fischer, M., and S.A. Short (1980) Cloning the Escherichia coli deoxyribonucleoside operon. Abstr. Ann. Mtg. Amer. Soc. Microbiol. 1980:125.Google Scholar
  79. 79.
    Hershfield, V., H.W. Boyer, L. Chow, and D.R. Helinski (1974) Plasmid colEl as a molecular vehicle for cloning and amplification of DNA. Proc. Natl. Acad. Sci., USA 71:3455–3459.PubMedCrossRefGoogle Scholar
  80. 80.
    Nagahari, K., T. Tanaka, F. Hishinuma, M. Kuroda, and K. Sakaguchi (1977) Control of tryptophan synthetase amplified by varying the numbers of composite plasmids in Escherichia coli cells. Gene 1:141–152.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Arnold L. Demain
    • 1
  1. 1.Fermentation Microbiology LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations