Microbial Enzymes and Lignocellulose Utilization

  • Ross D. BrownJr.
  • Mikelina Gritzali
Part of the Basic Life Sciences book series (BLSC, volume 28)


Although lignocellulose always has been a principal component of man’s food, fuel, and fiber, there has been for the past decade an increased interest in utilization of these materials by new and improved “bioconversion” processes. Since lignocellulose is the most abundant constituent of biomass, attention has been directed to several relatively inexpensive sources, such as agricultural, industrial, and municipal wastes. The biological reactions of the carbon cycle which are responsible for the conversion of lignin and cellulose turn over some 1011 tons/year (1). The variety of microorganisms which mediate the reactions, the extracellular conditions under which the reactions take place, and the products to which lignocellulose is converted are of scientific interest as well as being potentially valuable for technological applications. Studies of these processes range from determination of precise chemical mechanisms to analysis of microbial associations responsible for the multiplicity of reactions needed to convert the heterogeneous lignocellulose to metabolic intermediates and end products.


Cellulase Production Lignin Degradation Trichoderma Reesei Phanerochaete Chrysosporium Cellulase Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall, D.O. (1982) Solar energy through biology: Fuels from bio-mass. Experientia 38:3–10.CrossRefGoogle Scholar
  2. 2.
    Brown, D.E. (1983) Lignocellulose hydrolysis. Phil. Trans. R. Soc. Lond. B300:305–322.Google Scholar
  3. 3.
    Brown, Jr., R.D., and L. Jurasek, eds. (1979) Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Adv. Chem. Ser., Vol. 181. American Chemical Society, Washington, D.C., Vol. 181.Google Scholar
  4. 4.
    Chen, C.L., M.G.S. Chua, J.E. Evans, H.M. Chang, and T.K. Kirk (1981) Chemistry of lignin biodegradation by Phanerochaete chrysosporium. The Ekman Days Symp. 111:75–87.Google Scholar
  5. 5.
    Crawford, D.L., and R.L. Crawford (1980) Microbial degradation of lignin. Enzyme Microb. Technol. 2:11–22.CrossRefGoogle Scholar
  6. 6.
    Crawford, R.L. (1981) Lignin Biodegradation and Transformation. John Wiley & Sons, Inc., New York.Google Scholar
  7. 7.
    Eriksson, K.-E. (1978) Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnol. Bioeng. 20:317–332.CrossRefGoogle Scholar
  8. 8.
    Eriksson, K.-E. (1981) Microbial degradation of cellulose and lignin. The Ekman Days Symp. 111:60–65.Google Scholar
  9. 9.
    Eriksson, K.-E. (1982) Degradation of cellulose. Experientia 38:156–159.CrossRefGoogle Scholar
  10. 10.
    Flickinger, M. (1980) Current biological research in conversion of cellulosic carbohydrates into liquid fuels: How far have we come? Biotechnol. Bioeng. 21:27–48.Google Scholar
  11. 11.
    Higuchi, T. (1982) Biodegradation of lignin: Biochemistry and potential applications. Experientia 38:159–166.CrossRefGoogle Scholar
  12. 12.
    Hollaender, A., ed. (1981) Trends in the Biology of Fermentations for Fuels and Chemicals. Basic Life Sciences, Vol. 18, Plenum Press, New York.Google Scholar
  13. 13.
    Kirk, T.K. (1981) Principles of lignin degradation by white-rot fungi. The Ekman Days Symp. III:66–70.Google Scholar
  14. 14.
    Kirk, T.K., T. Higuchi, and H.M. Chang, eds. (1980) Lignin Biodegradation: Microbiology, Chemistry and Potential Applications. Vol. I, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  15. 15.
    Kirk, T.K., T. Higuchi, and H.M. Chang, eds. (1980) Lignin Biodegradation: Microbiology, Chemistry and Potential Applications. Vol. II, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  16. 16.
    Ladisch, M.R., K.W. Lin, M. Voloch, and G.T. Tsao (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb. Technol. 5:82–102.CrossRefGoogle Scholar
  17. 17.
    Palmer, J.M., and C.S. Evans (1983) The enzymic degradation of lignin by white-rot fungi. Phil. Trans. R. Soc. Lond. B300:293–303.Google Scholar
  18. 18.
    Ryu, D.D.Y., and M. Mandels (1980) Cellulases: Biosynthesis and applications. Enzyme Microb. Technol. 2:91–101.CrossRefGoogle Scholar
  19. 19.
    Scott, C.D., ed. (1982) Fourth Symposium on Biotechnology in Energy Production and Conservation. Biotech. Bioeng. Symp. No. 12. John Wiley & Sons, New York.Google Scholar
  20. 20.
    Reilly, P.J. (1981) Xylanases: Structure and function. In Trends in the Biology of Fermentations for Fuels and Chemicals, Basic Life Sciences, A. Hollaender, ed. Plenum Press, New York. Vol. 18, pp. 111–129.CrossRefGoogle Scholar
  21. 21.
    Gong, C.S. (1983) Recent advances in D-xylose conversion by yeasts. In Annual Reports on Fermentations Processes, G.T. Tsao, ed., Vol. 6, pp. 253–297.Google Scholar
  22. 22.
    Kirk, T.K. (1980) Studies on the physiology of lignin metabolism by white-rot fungi. In Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications, T.K. Kirk, T. Higuchi, and H. Chang, eds. CRC Press, Inc., Boca Raton, Florida, Vol. 11:51–63.Google Scholar
  23. 23.
    Kirk, T.K. (1981) Toward elucidating the mechanism of action of the ligninolytic system in Basidiomycetes. In Trends in the Biology of Fermentations for Fuels and Chemicals, Basic Life Sciences, A. Hollaender, ed. Plenum Press, New York. Vol.18, pp. 131–149.CrossRefGoogle Scholar
  24. 24.
    Hall, P., W. Glasser, and S. Drew (1980) Enzymatic transformations of lignin. In Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications, T.K. Kirk, T. Higuchi, and H. Chang, eds. CRC Press, Inc., Boca Raton, Florida, Vol. 11:33–49.Google Scholar
  25. 25.
    Hall, P.L. (1980) Enzymatic transformations in lignin II. Enzyme Microb. Technol. 2:170–178.CrossRefGoogle Scholar
  26. 26.
    Ander, P., A. Hatakka, and K.-E. Eriksson (1980) Degradation of lignin — related substances by Sporotrichum pulverulentum. In Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications, T.K. Kirk, T. Higuchi, and H. Chang, eds. CRC Press, Inc., Boca Raton, Florida, Vol. 11:1–15.Google Scholar
  27. 27.
    Ander, P., K.-E. Eriksson, P. Mansson, and B. Pettersson (1981) Lignin degradation by Sporotrichum pulverulentum: A new cultivation method to study fungal lignin degradation. The Ekman Days Symp. 111:71–74.Google Scholar
  28. 28.
    Freer, S.N., and R.W. Detroy (1982) Biological delignification of C-labelled lignocelluloses by Basidiomycetes: Degradation and solubilization of the lignin and cellulose components. Mycologia 74:943–951.CrossRefGoogle Scholar
  29. 29.
    Buswell, J.A., P. Ander, and K.-E. Eriksson (1982) Lignolytic activity and levels of ammonia assimilating enzymes in Sporotrichum pulverulentum. Arch. Microbiol. 133:165–171.CrossRefGoogle Scholar
  30. 30.
    Reid, I.D. (1983) Effects of nitrogen supplements on degradation of aspen wood lignin and carbohydrate components by Phan-erochaete chrysosporium. Appl. Environ. Microbiol. 45:830–837.PubMedGoogle Scholar
  31. 31.
    Reid, I.D. (1983) Effects of nitrogen sources on cellulose and synthetic lignin degradation by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45:838–842.PubMedGoogle Scholar
  32. 32.
    Eriksson, K.-E., A. Grünewald, and L. Vallander (1980) Studies of growth conditions in wood for three white-rot fungi and their cellulaseless mutants. Biotechnol. Bioeng. 22:363–376.CrossRefGoogle Scholar
  33. 33.
    Ayers, A.R., S.B. Ayers, and K.-E. Eriksson (1978) Cellobiose oxidase, purification and partial characterization of a hemo-protein from Sporotrichum pulverulentum. Eur. J. Biochem. 90:171–181.PubMedCrossRefGoogle Scholar
  34. 34.
    Ayers, A.R., and K.-E. Eriksson (1982) Cellobiose oxidase from Sporotrichum pulverulentum. In Methods in Enzymology, W.A. Wood, ed. Academic Press, Inc., New York, Vol. 89, pp. 129–135.Google Scholar
  35. 35.
    Koenigs, J. (1974) Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch. Microbiol. 99:129.CrossRefGoogle Scholar
  36. 36.
    Highley, T.L. (1982) Is extracellular hydrogen peroxide involved in cellulose degradation by brown-rot fungi? Materialen und Organismen 17:205–214.Google Scholar
  37. 37.
    Forney, L.J., C.A. Reddy, M. Tien, and S.D. Aust (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 257:11455–11462.PubMedGoogle Scholar
  38. 38.
    Nakatsubo, F., I.D. Reid, and T.K. Kirk (1981) Involvement of singlet oxygen in fungal degradation of lignin. Biochem. Biophys. Res. Comm. 102:484–491.PubMedCrossRefGoogle Scholar
  39. 39.
    Wood, T.M., and S.I. McCrae (1982) Purification and some properties of a (1->4)-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohyd. Res. 110:291–303.CrossRefGoogle Scholar
  40. 40.
    Alexander, J.K. (1972) Cellobiose Phosphorylase from Clostridium thermocellum. In Methods in Enzymology, V. Ginsburg, ed. Academic Press, Inc., New York, Vol. 28, pp. 944–948.Google Scholar
  41. 41.
    Alexander, J.K. (1972) Cellodextrin Phosphorylase from Clostridium thermocellum. In Methods in Enzymology, V. Ginsburg, ed. Academic Press, Inc., New York, Vol. 28, pp. 948–953.Google Scholar
  42. 42.
    Sasaki, T., T. Tanaka, S. Nakagawa, and K. Kainuma (1983) Purification and properties of Cellvibrio gilvus cellobiose Phosphorylase. Biochem. J. 209:803–807.PubMedGoogle Scholar
  43. 43.
    Mandels, M., and R.E. Andreotti (1978) Problems and challenges in the cellulose to cellulase fermentation. Process Biochem. 13:6–13.Google Scholar
  44. 44.
    Fennington, G., D. Lupo, and F. Stutzenberger (1982) Enhanced cellulase production in mutants of Thermomonospora curvata. Biotechnol. Bioeng. 24:2487–2497.PubMedCrossRefGoogle Scholar
  45. 45.
    Hagerdal, B., H. Harris, and E.K. Pye (1979) Association of β-glucosidase with intact cells of thermoactinomyces. Biotechnol. Bioeng. 21:345–355.PubMedCrossRefGoogle Scholar
  46. 46.
    Meyer, H.P., and A.E. Humphrey (1982) Cellulase production by a wild and a new mutant strain of Thermomonospora sp. Biotechnol. Bioeng. 24:1901–1904.PubMedCrossRefGoogle Scholar
  47. 47.
    Tong, C.C., A.L. Cole, and M.G. Shepherd (1980) Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus. Biochem. J. 191:83–94.Google Scholar
  48. 48.
    Folan, M.A., and M.P. Coughlan (1979) The saccharifying ability of the cellulase complex of Talaromyces emersonii and comparison with that of other fungal species. Int. J. Biochem. 10:505–510.PubMedCrossRefGoogle Scholar
  49. 49.
    Ait, N., N. Creuzet, and J. Canñanéo (1982) Properties of ß-glucosidase purified from Clostridium thermocellum. J. Gen. Microbiol. 128:569–577.Google Scholar
  50. 50.
    Johnson, E.A., M. Sakajoh, G. Halliwell, A. Madia, and A.L. Demain (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43:1125–1132.PubMedGoogle Scholar
  51. 51.
    Ng, T.K., and J.G. Zeikus (1981) Comparison of extracellular cellulase activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414. Appl. Environ. Microbiol. 42:231–240.PubMedGoogle Scholar
  52. 52.
    Canevascini, G., M.R. Coudray, J.P. Rey, R.J.G. Southgate, and H. Meier (1979) Induction and catabolite repression of cellulase synthesis in the thermophilic fungus Sporotrichum thermophile. J. Gen. Microbiol. 110:291–303.CrossRefGoogle Scholar
  53. 53.
    Margaritis, A., and M. Merchant (1983) Xylanase, CM-cellulase and Avicelase production by the thermophilic fungus Sporotrichum thermophile. Biotechnol. Lett. 5:265–270.CrossRefGoogle Scholar
  54. 54.
    Wood, T.M., C.A. Wilson, and C.S. Stewart (1982) Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem. J. 205:129–137.PubMedGoogle Scholar
  55. 55.
    Wang, D.I.C., G.C. Avgerinos, I. Biocic, S.D. Wang, and H.Y. Fang (1983) Ethanol from cellulosic biomass. Phil. Trans. R. Soc. Lond. B300:323–333.Google Scholar
  56. 56.
    Gritzali, M., and R.D. Brown, Jr. (1979) The cellulase system of Trichoderma: Relationships between extracellular enzymes from induced or cellulose-grown cells. In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Adv. Chem. Ser., R.D. Brown, Jr. and L. Jurasek, eds. American Chemical Society, Washington, D.C., Vol. 181:237–260.CrossRefGoogle Scholar
  57. 57.
    Fägerstam, L.G., and L.G. Pettersson (1980) The 1,4-β-glucan cellobiohydrolases of Trichoderma reesei QM9414. A new type of cellulolytic synergism. FEBS Lett. 119:97–100.CrossRefGoogle Scholar
  58. 58.
    Kanda, T., I. Noda, K. Wakabayashi, and K. Nisizawa (1983) Transglycosylation activities of exo- and endo- type cellulases from Irpex lacteus (Polyporus tulipiferae). J. Biochem. 93:787–794.PubMedCrossRefGoogle Scholar
  59. 59.
    Wood, T.M., and S.I. McCrae (1978) The cellulase of Trichoderma koningii. Biochem. J. 171:61–72.PubMedGoogle Scholar
  60. 60.
    Wood, T.M., S.I. McCrae, and C.C. MacFarlane (1980) The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochem. J. 189:51–65.PubMedGoogle Scholar
  61. 61.
    Wood, T.M. (1969) The relationship between cellulolytic and pseudo-cellulolytic microoganisms. Biochim. Biophys. Acta 192:531–534.PubMedCrossRefGoogle Scholar
  62. 62.
    Wood, T.M., and S.I. McCrae (1979) Synergism between enzymes involved in the solubilization of native cellulose. In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Adv. Chem. Ser., R.D. Brown, Jr. and L. Jurasek, eds. American Chemical Society, Washington, D.C., Vol. 181:181–209.CrossRefGoogle Scholar
  63. 63.
    Allen, A., and D. Sternberg (1980) β-Glucosidase production by Aspergillus phoenicis in stirred-tank fermentors. Biotechnol. Bioeng. Symp. No. 10, pp. 189–197.Google Scholar
  64. 64.
    Brown, Jr., R.D., M. Gritzali, and W.C. Chirico (1981) Biosynthesis and characteristics of the enzymes comprising the Trichoderma cellulase system. The Ekman Days Symp. 111:28–30.Google Scholar
  65. 65.
    Pettersson, L.G., L. Fägerstam, R. Bhikhabhai, and K. Leandoer (1981) The cellulase complex of Trichoderma reesei QM9414. The Ekman Days Symp. 111:39–42.Google Scholar
  66. 66.
    Farkas, V., A. Jalanko, and N. Kolarova (1982) Characterization of cellulase complexes from Trichoderma reesei QM9414 and its mutants by means of analytical isoelectrofusing in Polyacrylamide gels. Biochim. Biophys. Acta 706:105–110.CrossRefGoogle Scholar
  67. 67.
    Labudova, I., and V. Farkas (1983) Multiple enzyme forms in the cellulase system of Trichoderma reesei during its growth on cellulose. Biochim. Biophys. Acta 744:135–140.CrossRefGoogle Scholar
  68. 68.
    Lützen, N.W., M.H. Nielsen, K.M. Oxenboell, M. Schülein, and B. Stentebjerg-Olesen (1983) Cellulases and their application in the conversion of lignocellulose to fermentable sugars. Phil. Trans. R. Soc. Lond. B300:283–291.Google Scholar
  69. 69.
    Gum, Jr., E.K., and R.D. Brown, Jr. (1977) Comparison of four purified extracellular 1,4-β-D-glucan cellobiohydrolase enzymes from Trichoderma viride. Biochim. Biophys. Acta 492:225–231.CrossRefGoogle Scholar
  70. 70.
    Gritzali, M. (1979) Purification and characterization of an endo-1,4–3-D-glucanase and two exo-1,4-β-D-glucanases from the cellulase system of Trichoderma reesei. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  71. 71.
    Montenecourt, B.S., and D.E. Eveleigh (1977) Semi-quantitative plate assay for determination of cellulase production by Trichoderma viride. Appl. Environ. Microbiol. 33:178–183.PubMedGoogle Scholar
  72. 72.
    Montenecourt, B.S., and D.E. Eveleigh (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In Hydrolysis of cellulose: Mechanisms of Enzymatic and Acid Catalysis, R.D. Brown, Jr. and L. Jurasek, eds. Adv. Chem. Ser., American Chemical Society, Washington, Vol. 181:289–301.CrossRefGoogle Scholar
  73. 73.
    Montenecourt, B.S., S.M. Cuskey, S.D. Nhlapo, H. Trimifio-Vazquez, and D.E. Eveleigh (1981) Strain development for the production of microbial cellulases. The Ekman Days Symp. 111:43–50.Google Scholar
  74. 74.
    Montenecourt, B.S., S.K. Nhlapo, H. Trimiiio-Vazquez, S. Cuskey, D.H.J. Schamhart, and D.E. Eveleigh (1981) Regulatory controls in relation to overproduction of fungal cellulases. In Trends in the Biology of Fermentations for Fuels and Chemicals, Basic Life Sciences, A. Hollaender, ed. Plenum Press, New York, Vol. 18, pp. 33–53.CrossRefGoogle Scholar
  75. 75.
    Bailey, M.J., and K.M.H. Nevalainen (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb. Technol. 3:153–157.CrossRefGoogle Scholar
  76. 76.
    Beja da Costa, M., and N. Van Nuden (1980) Use of 2-deoxyglu-cose in the selective isolation of mutants of Trichoderma reesei with enhanced 3-glucosidase production. Biotechnol. Bioeng. 22:2429–2432.CrossRefGoogle Scholar
  77. 77.
    Kubicek, C.P. (1982) β-Glucosidase excretion by Trichoderma pseudokoningii: Correlation with cell wall bound β-1,3-glucanase activities. Arch. Microbiol. 132:349–354.PubMedCrossRefGoogle Scholar
  78. 78.
    Kubicek, C.P. (1983) β-Glucosidase excretion in Trichoderma strains with different cell-wall bound 3–1,3-glucanase activities. Can. J. Microbiol. 29:163–169.PubMedCrossRefGoogle Scholar
  79. 79.
    Warczywoda, M., J.P. Vandecasteele, and J. Pourquié (1983) A comparison of genetically improved strains of the cellulolytic fungus Trichoderma reesei. Biotechnol. Lett. 5:243–246.CrossRefGoogle Scholar
  80. 80.
    Saddler, J.N. (1982) Screening of highly cellulolytic fungi and the action of their cellulase enzyme systems. Enzyme Microb. Technol. 4:414–418.CrossRefGoogle Scholar
  81. 81.
    Gallo, B.J. (1981) Cellulase production by the new hyperproducing strain of Trichoderma reesei MCG80. Natl. Meeting, AIChE., Orlando, Florida.Google Scholar
  82. 82.
    Mishra, S., K.S. Gopalkrishnan, and T.K. Ghose (1982) A constitutively cellulase-producing mutant of Trichoderma reesei. Biotechnol. Bioeng. 24:251–254.PubMedCrossRefGoogle Scholar
  83. 83.
    Shoemaker, S.P., J.C. Raymond, and R. Bruner (1981) Cellulases: Diversity amongst improved Trichoderma strains. In Trends in the Biology of Fermentations for Fuels and Chemicals. Basic Life Sciences, A. Hollaender, ed., Plenum Press, New York. Vol. 18, pp. 89–109.CrossRefGoogle Scholar
  84. 84.
    Zhu, Y.S., Y.Q. Wu, W. Chen, C. Tan, J.H. Gao, J.Y. Fei, and C.N. Shih (1982) Induction and regulation of cellulase synthesis in Trichoderma pseudokoningii mutants EA3–867 and N2–78. Enzyme Microb. Technol. 4:3–12.CrossRefGoogle Scholar
  85. 85.
    Bissett, F.H. (1979) Analysis of cellulase proteins by high-performance liquid chromatography. J. Chromatography 178:515–523.CrossRefGoogle Scholar
  86. 86.
    Ghosh, A., S. Al-Rabiai, B.K. Ghosh, H. Trimiiio-Vazquez, D.E. Eveleigh, and B.S. Montenecourt (1982) Increased endoplasmic reticulum content of a mutant of Trichoderma reesei (RUT-C30) in relation to cellulase synthesis. Enzyme Microb. Technol. 4:110–113.CrossRefGoogle Scholar
  87. 87.
    Desrochers, M., L. Jurasek, and M.G. Paige (1981) High production of β-glucosidase in Schizophyllum commune: Isolation of the enzyme and effect of the culture filtrate on cellulose hydrolysis. Appl. Environ. Microbiol. 41:222–228.PubMedGoogle Scholar
  88. 88.
    Mandels, M., F.W. Parrish, and E.T. Reese (1961) Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol. 83:400–408.Google Scholar
  89. 89.
    Nisizawa, T., H. Suzuki, M. Nakayama, and K. Nisizawa (1971) Inductive formation of cellulase by sophorose in Trichoderma viride. J. Biochem. 70:375–385.PubMedGoogle Scholar
  90. 90.
    Nisizawa, T., H. Suzuki, and K. Nisizawa (1972) Catabolite repression of cellulase formation in Trichoderma viride. J. Biochem. 71:999–1007.PubMedGoogle Scholar
  91. 91.
    Gum, Jr., E.K., and R.D. Brown, Jr. (1976) Structural characterization of a glycoprotein cellulase, 1,4-β-D-glucan cellobiohydrolase C from Trichoderma viride. Biochim. Biophys. Acta 446:371–386.PubMedCrossRefGoogle Scholar
  92. 92.
    Hitchner, E.V., and J.M. Leatherwood (1980) Use of a cellulase-derepressed mutant of Cellulomonas in the production of a single-cell protein product from cellulose. Appl. Environ. Microbiol. 39:382–386.PubMedGoogle Scholar
  93. 93.
    Miller, T.F., and V.R. Srinivasan (1983) Production of single-cell protein from cellulose by Aspergillus terreus. Biotechnol. Bioeng. 25:1509–1519.CrossRefGoogle Scholar
  94. 94.
    Pamment, N., C.W. Robinson, J. Hilton, and M. Moo-Young (1978) Solid-state cultivation of Chaetomium cellulolyticum on alkali-pretreated sawdust. Biotechnol. Bioeng. 20:1735–1744.CrossRefGoogle Scholar
  95. 95.
    Takagi, M., S. Abe, S. Suzuki, G.H. Emert, and N. Yata (1978) Method for production of alcohol directly from cellulose using cellulase and yeast. In Bioconversion of cellulosic substances into energy, chemicals and microbial protein, T.K. Ghose, ed. Symposium Proceedings, Indian Institute of Technology, New Delhi, India, pp. 551–571.Google Scholar
  96. 96.
    Saddler, J.N., C. Hogan, M.K.H. Chan, and G. Louis Seize (1982) Ethanol fermentation of enzymatically hydrolyzed pretreated wood fractions using Trichoderma cellulases, Zymomonas mobilis and Saccharomyces cerevisiae. Can. J. Microbiol. 28:1311–1319.CrossRefGoogle Scholar
  97. 97.
    Freer, S.N., and R.W. Detroy (1982) Direct fermentation of cellodextrins to ethanol by Candida wickerhamii and C. lusitaniae. Biotechnol. Lett. 4:453–458.CrossRefGoogle Scholar
  98. 98.
    Freer, S.N., and R.W. Detroy (1983) Characterization of cello-biose fermentations to ethanol by yeasts. Biotechnol. Bioeng. 25:541–557.PubMedCrossRefGoogle Scholar
  99. 99.
    Khan, A.W. (1980) Degradation of cellulose to methane by a coculture of Acetivibrio cellulolyticus and Methanosarcina Barkeri. FEMS Microbiol. Lett. 9:233–235.Google Scholar
  100. 100.
    Wolin, M.J., and T.L. Miller (1983) Interactions of microbial populations in cellulose fermentation. Fed. Proc. 42:109–113.PubMedGoogle Scholar
  101. 101.
    Odom, J.M., and J.D. Wall (1983) Photoproduction of H from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol. 45:1300–1305.PubMedGoogle Scholar
  102. 102.
    Wood, W.A. (1981) Basic biology of microbial fermentation. In Trends in the Biology of Fermentations for Fuels and Chemicals. Basic Life Sciences, A. Hollaender, ed., Plenum Press, New York. Vol. 18, pp. 3–17.CrossRefGoogle Scholar
  103. 103.
    Armentrout, R.W., and R.D. Brown, (1981) Molecular cloning of genes for cellobiose utilization and their expression in Escherichia coli. Appl. Environ. Microbiol. 41:1355–1362.PubMedGoogle Scholar
  104. 104.
    Whittle, D.J., D.G. Kolburn, R.A.J. Warren, and R.C. Miller, Jr. (1982) Molecular cloning of a Cellulomonas fimi cellulase gene in Escherichia coli. Gene 17:139–145.Google Scholar
  105. 105.
    Cornet, P., D. Tronik, J. Millet, and J.P. Aubert (1983) Cloning and expression in Escherichia coli of Clostridium thermocellum genes coding for amino acid synthesis and cellulose hydrolysis. FEMS Microbiol. Lett. 16:137–141.CrossRefGoogle Scholar
  106. 106.
    Faber, M. (1983) Cornell scientists clone, express cellulase genes in E. coli (meeting report). Biotechnology 1:139.Google Scholar
  107. 107.
    Montenecourt, B.S. (1983) Application of recombinant DNA technology to cellulose hydrolysis (ASM Technology Report). Biotechnology 1:166–167.Google Scholar
  108. 108.
    Gritzali, M. (1980) Biosynthesis of the enzymes of the cellulase system by T. reesei QM9414 in the presence of sophorose. In Biotechnology for the Production of Chemicals and Fuels from Biomass. SERI Workshop Proceedings, Vail, Colorado, pp. 83–90.Google Scholar
  109. 109.
    Mitchell, R.W., B. Hahn-Hägerdal, J.D. Ferchak, and E.K. Pye (1982) Characterization of β-1,4-glucosidase activity in Thermoanaerobacter ethanolicus. Biotechnol. Bioeng. Symp. No. 12, pp. 461–467.Google Scholar
  110. 110.
    Khan, A.W., and W.D. Murray (1982) Single step conversion of cellulose to ethanol by a mesophilic coculture. Biotechnol. Lett. 4:177–180.CrossRefGoogle Scholar
  111. 111.
    Mandels, M. (1975) Microbial sources of cellulase. Biotechnol. Bioeng. Symp. No. 5, pp. 81–105.Google Scholar
  112. 112.
    Gallo, B.J., R. Andreotti, C. Roche, D. Ryu, and M. Mandels (1978) Cellulase production by a new mutant strain of Tricho-derma reesei MCG 77. Biotechnol. Bioeng. Symp. No. 8, pp. 89–101.Google Scholar
  113. 113.
    Tien, M., and T.K. Kirk (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ross D. BrownJr.
    • 1
    • 2
  • Mikelina Gritzali
    • 1
  1. 1.Department of Food Science and Human Nutrition, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations