Pseudomonas Hydrocarbon Oxidation

  • J. A. Shapiro
  • D. J. Owen
  • M. Kok
  • G. Eggink
Part of the Basic Life Sciences book series (BLSC, volume 28)


In this paper we will withdraw from the complex world of mixed cultures and multiple substrates that characterize polluted ecosystems and treatment facilities to discuss a simple model system involving petri dishes, vapor phase pure substrates, and genetically defined bacterial strains. The laboratory situation is no less “real” than any other and has many important lessons to teach us if we are ever to be in a position to design pollutant-degrading organisms with the same level of sophistication now employed to produce medically important polypeptides. One of the major points to be made is that even a hydrocarbon oxidation system chosen for maximum simplicity reveals a genetic complexity that is beyond our current understanding.


Aliphatic Alcohol Hydrocarbon Oxidation lacZ Fusion Alkane Hydroxylase Alcohol Dehydrogenase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baptist, J.N., R.K. Gholson, and M.J. Coon (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim. Biophys. Acta 69:40–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Bassford, P., J. Beckwith, M. Berman, E. Brickman, M. Casadaban, L. Guarente, I. Saint-Girons, A. Sarthy, M. Schwartz, H. Shuman, and T. Silhavy (1980) Genetic fusions of the lac Operon: A new approach to the study of biological processes. In The Operon, J.H. Miller and W.S. Reznikoff, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 245–262.Google Scholar
  3. 3.
    Benson, S., M. Oppici, M. Fennewald, and J. Shapiro (1979) Regulation of membrane proteins by the Pseudomonas plasmid alk (alkane utilization) regulon. J. Bacteriol. 140:754–762.PubMedGoogle Scholar
  4. 4.
    Casadaban, M.J., and S.N. Cohen (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138:179–207.PubMedCrossRefGoogle Scholar
  5. 5.
    Chakrabarty, A.M. (1973) Genetic fusion of incompatible Plasmids in Pseudomonas. Proc. Nat. Acad. Sci., U.S.A. 70:1641–1644.CrossRefGoogle Scholar
  6. 6.
    Chakrabarty, A.M., G. Chou, and I.C. Gunsalus (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Nat. Acad. Sci., U.S.A. 70:1137–1140.CrossRefGoogle Scholar
  7. 7.
    Fennewald, M., S. Benson, M. Oppici, and J. Shapiro (1979) Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon. J. Bacteriol. 139:940–952.PubMedGoogle Scholar
  8. 8.
    Fennewald, M., and J. Shapiro (1977) Regulatory mutations of the Pseudomonas plasmid alk regulon. J. Bacteriol. 132:622–627.PubMedGoogle Scholar
  9. 9.
    Fennewald, M., and J. Shapiro (1979) Transposition of Tn7 in P. aeruginosa and isolation of alk::Tn7 mutations. J. Bacteriol. 139:264–269.PubMedGoogle Scholar
  10. 10.
    Gholson, R.K., J.N. Baptist, and M.J. Coon (1963) Hydrocarbon oxidation by a bacterial enzyme system. II. Cofactor requirements for octanol formation from octane. Biochemistry 2:1155–1159.PubMedCrossRefGoogle Scholar
  11. 11.
    McKenna E.J., and M.J. Coon (1970) Enzymatic w-oxidation of Pseudomonas oleovorans. J. Biol. Chem. 245:3882–3889.PubMedGoogle Scholar
  12. 12.
    Peterson, J.A., D. Basu, and M.J. Coon (1966) Enzymatic co-oxidation. I. Electron carriers in fatty acid and hydrocarbon oxidation. J. Biol. Chem. 241:5162–5164.PubMedGoogle Scholar
  13. 13.
    Schwartz, R. (1973) Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans. Appl. Microbiol. 25:574–577.PubMedGoogle Scholar
  14. 14.
    Shapiro, J.A., S. Benson, M. Fennewald, A. Grund, and M. Nieder (1976) Genetics of alkane utilization. In Microbiology 1976, D. Schlessinger, ed. American Society for Microbiology, Washington, D.C., pp. 568–571.Google Scholar
  15. 15.
    de Smet, M.-J., H. Wynberg, and B. Witholt (1981) Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two-phase system containing high concentrations of 1-octene. Appl. Environ. Microbiol. 42:811–816.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. A. Shapiro
    • 1
  • D. J. Owen
    • 1
  • M. Kok
    • 1
  • G. Eggink
    • 1
  1. 1.Department of MicrobiologyThe University of ChicagoChicagoUSA

Personalised recommendations