Targets for the Design of Antiviral Agents: Targets in Orthomyxoviruses

  • J. J. Skehel
  • D. C. Wiley
Part of the NATO ASI Series book series (NSSA, volume 73)


To initiate replication influenza viruses bind to sialic acid residues of membrane glycoconjugates and are taken into intracellular vesicles by endocytosis. Fusion of virus membranes and endosomal membranes occurs and virus transcription complexes are transferred to cell nuclei where virus messenger RNAs are synthesized. The translation of these messengers leads to the production of the proteins involved in RNA replication, in virus assembly, and in the release of progeny virus particles from the cell by budding at the plasma membrane. Each of these processes in the replication cycle will be considered in turn to indicate possible targets for inhibitors of virus production.


Influenza Virus Sialic Acid Vesicular Stomatitis Virus Virus Assembly Sialic Acid Residue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gottschalk, in: “The Viruses” Vol 3, F. M. Burnet and W. M. Stanley, eds., Academic Press (1959) pp. 51–61.Google Scholar
  2. 2.
    G. N. Rogers, J. C. Paulson, R. S. Daniels, J. J. Skehel, I. A. Wilson and D. C. Wiley, Nature (1983) in press.Google Scholar
  3. 3.
    I. A. Wilson, J. J. Skehel and D. C. Wiley. Nature 289: 368 (1981).Google Scholar
  4. 4.
    J. M. Whie and A. Helenius, Proc. Natl. Acad. Sci. USA 77: 3273 (1980).CrossRefGoogle Scholar
  5. 5.
    P. Vaananen and L. Kaariainen, J. gen. Virol. 46: 467 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Maeda and S. Ohnishi, Febs Lett. 122: 283 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    R. T. C. Huang, R. Rott and H.-D. Klenk, Virology 110: 243 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    C. M. Brand and J. J. Skehel, Nature New Biol. 238: 145 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    J. J. Skehel, P. M. Bayley, E. B. Brown, S. R. Martin, M. D. Waterfield, J. M. White, I. A. Wilson and D. C. Wiley, Proc. Natl. Acad. Sci. 79: 968 (1982).CrossRefGoogle Scholar
  10. 10.
    J. M. White, K. Martin and A. Helenius, J. Cell. Biol. 89: 674 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    J. J. Skehel and M.D. Waterfield, Proc. Natl. Acad. Sci., 72: 93 (1975).CrossRefGoogle Scholar
  12. 12.
    R. S. Daniels, A. R. Douglas, J. J. Skehel, M. D. Waterfield, I. A. Wilson and D. C. Wiley, in: “The Origin of Pandemic Influenza Viruses”, C. M. Chu and W. G. Laver, eds., (1982) in press.Google Scholar
  13. 13.
    C. J. Galloway, G. E. Dean, M. Marsh, G. Rudnick and I. Mellman, Proc. Natl. Acad. Sci. 80: 3334 (1983).CrossRefGoogle Scholar
  14. 14.
    J. W. McCauley and B. W. J. Mahy, Biochem. J. 211: 281 (1983).PubMedGoogle Scholar
  15. 15.
    J. J. Skehel and A. J. Hay, Nucleic Acids Res. 5: 1207 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    J. S. Robertson, Nucleic Acids Res. 6: 3745 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    U. Desselberger, V. R. Racionello, J. J. Zazra and P. Palese, Gene 8:315 (1 980).Google Scholar
  18. 18.
    I. Ulmanen, B. A. Broni and R. M. Krug. Proc. Natl. Acad. Sci. 78:7355 (1981)Google Scholar
  19. 19.
    S. J. Plotch, M. Bouloy, I. Ulmanen and R. M. Krug, Cell 23:81+7 (1981).CrossRefGoogle Scholar
  20. 20.
    R. Dhar, R. M. Chanock and C. J. Lai, Cell 21:1+95 (1980).Google Scholar
  21. 21.
    A. J. Caton and J. S. Robertson, Nucleic Acids Res. 8: 2591 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    J. S. Robertson, M. Schubert and R. A. Lazzarini, J. Virol. 38: 157 (1981).PubMedGoogle Scholar
  23. 23.
    N. Proudfoot, Nature 298: 516 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    A. J. Hay, J. J. Skehel and J. McCauley, Virology 116: 517 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Scholtissek, Adv. Genet. 20: 1 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    Ulmanen, I., Broni, B. and Krug, R.M. Proc. Natl. Acad. Sci., 78: 7355 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Blaas, E. Patzelt and E. Kuechler, Nucleic Acids Res. 10: 4803 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    M. A. Horisberger, Virology 120: 279 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    I. Ulmanen, B. Broni and R. M. Krug, J. Virol. 45: 27 (1983).PubMedGoogle Scholar
  30. 30.
    A. R. Beaton and R. M. Krug, Nucleic Acids Res. 9: 4423 (1981)PubMedCrossRefGoogle Scholar
  31. 31.
    A. J. Hay and J. J. Skehel, Br. Med. Bull. 35: 47 (1979).PubMedGoogle Scholar
  32. 32.
    G. L. Smith and A. J. Hay, Virology, 118: 96 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    G. K. Hirst, Cold Spring Harb. Symp. Quant. Biol. 27:303 (1962)•Google Scholar
  34. 34.
    W. G. Laver and J. C. Downie, Virology 70: 105 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    M. D. Lubeck, P. Palese and J. L. Schulman, Virology 95: 269 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    J. N. Varghese, W. G. Laver and P. M. Colman, Nature 303: 35 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Gregoriades and B. Frangione, J. Virol. 40: 323 (1981).PubMedGoogle Scholar
  38. 38.
    D. J. Bucher, I. G. Kharitonenkov, J. A. Zakomiridiu, V. B. Grigoriev, S. M. Klimenko and J. F. Davis, J. Virol. 36: 586 (1980).PubMedGoogle Scholar
  39. 39.
    A. Gregoriades, Virology 54: 369 (1973).PubMedCrossRefGoogle Scholar
  40. 40.
    A. J. Hay and J. J. Skehel, in: “Negative Strand Viruses”, B:6.3. J Maby and R. D. Barry, eds., Academic Press, N.Y.Google Scholar
  41. 41.
    C. M. Ward, Current Topics in Microbiol. and Immunol. (1982).Google Scholar
  42. 42.
    J. Zavada, J. gen. Virol. 63: 15 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    A. J. Hay, N. C. T. Kennedy, J. J. Skehel and G. Appleyard, J. gen. Virol. 42: 189 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    M. D. Lubeck, J. L. Schulman and P. Palese, J. Virol. 28: 710 (1978).PubMedGoogle Scholar
  45. 45.
    M. F. Schmidt, Virology 116: 327 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Blok, G. M. Air, W. G. Laver, C. W. Ward, G. G. Lilley, E. F. Woods, C. M. Roxburgh and A. S. Inglis, Virology 119: 109 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    H.-D. Klenk, R. Rott, M. Orlich and J. Blodorn, Virology 68: 426 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    S. G. Lazarowitz and P. W. Choppin, Virology 68: 440 (1975).PubMedCrossRefGoogle Scholar
  49. 49.
    P. Palese, T. Tobita and M. Ueda, Virology 61: 397 (1974).PubMedCrossRefGoogle Scholar
  50. 50.
    D. Bucher and P. Palese, in: “Influenza Viruses and Influenza”, E. D. Kilbourne, ed., Academic Press, N.Y., pp 84–123 (1975).Google Scholar
  51. 51.
    P. M. Colman, J. N. Varghese and W. G. Laver, Nature 303: 41 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. J. Skehel
    • 1
    • 2
  • D. C. Wiley
    • 1
    • 2
  1. 1.National Institute for Medical ResearchLondon NW7UK
  2. 2.Department of BiochemistryHarvard UniversityCambridgeUSA

Personalised recommendations