Pyrimidine Nucleoside Analogues as Antiviral Agents

  • Erik De Clercq
Part of the NATO ASI Series book series (NSSA, volume 73)


The majority of the antiviral drugs that have been licensed for clinical use or are being considered for clinical use are pyrimidine nucleoside analogues and these compounds are primarily directed towards the treatment of herpesvirus (HSV-1, HSV-2 and VZV) infections. Thus, idoxuridine (IDU, 5-iodo-2′-deoxyuridine) and trifluridine (TFT, 5-trifluoromethyl-2′-deoxyuridine) are widely used as eye drops, at 0.1 % and 1 % respectively, in the topical treatment of herpetic keratitis; 5-ethyl-2′-deoxyuridine is used in W.-Germany as a 0.3 % gel, 0.15 % eye drops or 0.5 % solution for subconjunctival injection, in the treatment of herpetic keratitis; and 5-iodo-2′-deoxycytidine is used in France as 0.15 % eye drops or 1 % eye ointment for the topical treatment of herpetic keratitis, and as 1 % ointment for the topical treatment of herpetic skin lesions. IDU can also be used for the topical treatment of cutaneous HSV and VZV infections, i.e. when applied at 10 % in DMSO (dimethylsulfoxide). Finally, cytarabine (Ara-C, cytosine arabinoside, 1-β-D-arabinofuranosylcytosine) has been administered occasionally in the systemic treatment of herpetic encephalitis and herpes zoster. The recommended daily dose was 40 mg/m2/day for 5 days. At present, ara-C is not longer used as an antiviral drug. Instead, it is commonly used in combination with other drugs such as thioguanine or daunomycin in the treatment of acute lymphoblastic leukemia and acute myeloblastic leukemia.


Antiviral Activity Simian Varicella Virus Herpetic Keratitis Acyclic Nucleoside Antiviral Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



50 % inhibitory dose


herpes simplex virus type 1


herpes simplex virus type 2


varicella zoster virus




Epstein-Barr virus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Reefschläger, D. Bärwolff, P. Engelmann, P. Langen and H.A. Rosenthal, Efficiency and selectivity of (E)-5-(2-bromovinyl)21-deoxyuridine and some other 5-substituted 2’-deoxypyrimidine nucleosides as anti-herpes agents, Antiviral Research 2: 41 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    C.L. Schmidt, C.T.-C. Chang, E. Clercq, J. Descamps and M.P. Mertes, Synthesis of 5-((methylthio)methyl)-2’-deoxyuridine, the corresponding sulfoxide and sulfone, and their 5’-phosphates: antiviral effects and thymidylate synthetase inhibition, J. Med. Chem. 23: 252 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    E. Clnrcq, J. Descamps, C.L. Schmidt and M.P. Mertes, Antiviral activity of 5-methylthiomethyl-2’-deoxyuridine and other 5-substituted 2’-deoxyuridines, Biochem. Pharmacol. 28: 3249 (1979).CrossRefGoogle Scholar
  4. 4.
    J.B. Meldrum, V.S. Gupta and J.R. Saunders, Cell culture studies on the antiviral activity of ether derivatives of 5-hydroxymethyldeoxyuridine, Antimicrob. Agents Chemother. 6: 393 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Clercq, J. Descamps, J. Balzarini, J. Giziewicz, P.J. Barr and M.J. Robins, Nucleic acid related compounds. 42. Synthesis and biological activities of 5-alkynyluracil nucleosides, J. Med. Chem. 26: 661 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    P.F. Torrence, J.W. Spencer, A.M. Bobst, J. Descamps and E. De Clercq, 5–0-alkylated derivatives of 5-hydroxy-2’-deoxyuridine as potential antiviral agents. Anti-herpes activity of 5-propynyloxy-2’-deoxyuridine, J. Med. Chem. 21: 228 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    E. De Clercq and D. Shugar, Antiviral activity of 5-ethyl pyrimidine deoxynucleosides, Biochem. Pharmacol. 24: 1073 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Y.-C. Cheng, B.A. Domin, R.A. Sharma and M. Bobek, Antiviral action and cellular toxicity of four thymidine analogues: 5-ethyl-, 5-vinyl-, 5-propyl-, and 5-allyl-2’-deoxyuridine, Antimicrob. Agents Chemother. 10: 119 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Clercq, J. Descamps and D. Shugar, 5-Propyl-2’-deoxyuridine: a specific anti-herpes agent, Antimicrob. Agents Chemother. 13: 545 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    L.A. Babiuk, B. Meldrum, V.S. Gupta and B.T. Rouse, Comparison of the antiviral effects of 5-methoxymethyldeoxyuridine with 5-iododeoxyuridine, cytosine arabinoside, and adenine arabinoside, Antimicrob. Agents Chemother. 8: 643 (1975).CrossRefGoogle Scholar
  11. 11.
    G.T. Shiau, R.F. Schinazi, M.S. Chen and W.H. Prusoff, Synthesis and biological activities of 5-(hydroxymethyl, azidomethyl, or aminomethyl)-2’-deoxyuridine and related 5’-substituted analogues, J. Med. Chem. 23: 127 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    T.Y. Shen, J.F. McPherson and B.O. Linn, Nucleosides. III. Studies on 5-methylamino-2’-deoxyuridine as a specific antiherpes agent, J. Med. Chem. 9: 366 (1966).PubMedCrossRefGoogle Scholar
  13. 13.
    G.-F. Huang, M. Okada, E. De Clercq and P.F. Torrence, Synthesis and antiviral activity of 5-((cyanomethylene)oxy)-2’-deoxyuridine, J. Med. Chem. 24: 390 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    Y.-C. Cheng, S. Grill and G. Dutschman, Time-dependent action of 5-propyl deoxyuridine as antiherpes simplex virus type 1 and type 2 agents, Biochem. Pharmacol. 28: 3529 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    E. De Clercq, J. Descamps, P. De Somer, P.J. Barr, A.S. Jones and R.T. Walker, (E)-5-(2-bromovinyl)-2’-deoxyuridine: a potent and selective anti-herpes agent, Proc. Natl. Acad. Sci. USA 76: 2947 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Langen, S.R. Waschke, K. Waschke, D. Bärwolff, J. Reefschläger, P. Schulz, B. Preussel and C. Lehmann, 5-Formyl-2’-deoxyuridine: cytostatic and antiviral properties and possible modes of action, Acta biol. med. germ. 35: 1625 (1976).Google Scholar
  17. 17.
    J.S. Park, C.T.-C. Chang, C.L. Schmidt, Y. Golander, E. De Clercq, J. Descamps and M.P. Mertes, Oxime and dithiolane derivatives of 5-formy1–2’-deoxyuridine and their 5’-phosphates: antiviral effects and thymidylate synthetase inhibition, J. Med. Chem. 23: 661 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    E. De Clercq, J. Descamps, G.-F. Huang and P.F. Torrence, 5Nitro-2’-deoxyuridine and 5-nitro-2’-deoxyuridine 5’-monophosphate: antiviral activity and inhibition of thymidylate synthetase in vivo, Mol. Pharmacol. 14: 422 (1978).PubMedGoogle Scholar
  19. 19.
    E. De Clercq, J. Balzarini, P.F. Torrence, M.P. Mertes, C.L. Schmidt, D. Shugar, P.J. Barr, A.S. Jones, G. Verhelst and R.T. Walker, Thymidylate synthetase as target enzyme for the inhibitory activity of 5-substituted 2’-deoxyuridines on mouse leukemia L1210 cell growth, Mol. Pharmacol. 19: 321 (1981).PubMedGoogle Scholar
  20. 20.
    J. Reefschläger, D. Bärwolff, K. Dressler and P. Langen, Differential antiherpes activity of the (E)- and (Z)-isomer of 5(2-fluoroviny1)-2’-deoxyuridine (FVUdR), Antiviral Research: submitted (1983).Google Scholar
  21. 21.
    E. De Clercq, J. Descamps, G. Verhelst, A.S. Jones and R.T. Walker, Antiviral activity of 5-(2-halogenovinyl)-2’-deoxyuridines, in: “Current Chemotherapy and Infectious Disease”, J.D. Nelson and C. Grassi, eds., American Society of Microbiology, Washington, D.C., p. 1372 (1980).Google Scholar
  22. 22.
    E. De Clercq, G. Verhelst, J. Descamps and D.E. Bergstrom, Differential inhibition of herpes simplex viruses, type 1 (HSV-1) and type 2 (HSV-2), by (E)-5-(2-X-viny1)-2’-deoxyuridines, Acta microbiol. Acad. Sci. hung. 28: 307 (1981).PubMedGoogle Scholar
  23. 23.
    J. Goodchild, R.A. Porter, R.H. Raper, I.S. Sim, R.M. Upton, J. Viney and H.J. Wadsworth, Structural requirements of olefinic 5-substituted deoxyuridines for anti-herpes activity, J. Med. Chem.: in press (1983).Google Scholar
  24. 24.
    Y.-C. Cheng, S. Grill, J. Ruth and D.E. Bergstrom, Anti-herpes simplex virus and anti-human cell growth activity of E-5-propenyl-2’-deoxyuridine and the concept of selective protection in antivirus chemotherapy, Antimicrob. Agents Chemother. 18: 957 (1980).PubMedCrossRefGoogle Scholar
  25. D.E. Bergstrom, J.L. Ruth, P.A. Reddy and E. De Clercq, Synthesis of (E)-5-(3,3,3-trifluoro-1-propenyl)-2’-deoxyuridine (TFPe-dUrd), and related analogs: potent and unusually selective antiviral activity of TFPe-dUrd against HSV-1, J. Med. Chem.: submitted (1983).Google Scholar
  26. 26.
    E. De Clercq, J. Balzarini, J. Descamps, C.F. Bigge, C.T.-C. Chang, P. Kalaritis and M.P. Mertes, Antiviral, antitumor, and thymidylate synthetase inhibition studies of 5-substituted styryl derivatives of 2’-deoxyuridine and their 5’-phosphates, Biochem. Pharmacol. 30: 495 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    A.S. Jones, S.G. Rahim, R.T. Walker and E. De Clercq, Synthesis and antiviral properties of (Z)-5-(2-bromovinyl)-2’-deoxyuridine, J. Med. Chem. 24: 759 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    E. De Clercq, Antiviral activity of 5-substituted pyrimidine nucleoside analogues, Pure and Appl. Chem. 55: 623 (1983).CrossRefGoogle Scholar
  29. 29.
    E. De Clercq, BVDU ((E)-5-(2-bromovinyl)-2’-deoxyuridine), in: “Antiviral Drugs and Interferon: The Molecular Basis of their Activity”, Y. Becker, ed., Martinus Nijhoff Publishers, The Hague, in press (1983).Google Scholar
  30. 30.
    E. De Clercq, Selective anti-herpes drugs, in: “Proceedings of the International Symposium on Medical Virology”, L.M. de La Maza, ed., Elsevier/North Holland, Amsterdam, in press (1983).Google Scholar
  31. 31.
    E. De Clercq, BVDU (bromovinyldeoxyuridine): current status in antiviral therapy, in: “Control of Viral Diseases”, E. Kur-stak, ed., Marcel Dekker, Inc., New York, in press (1983).Google Scholar
  32. 32.
    E.-C. Mar, P.C. Patel, Y.-C. Cheng, J.J. Fox and E.-S. Huang, Effect of a series of nucleoside analogs on human cytomegalovirus replication in vitro, J. Gen. Virol.: submitted (1983).Google Scholar
  33. 33.
    A. Larsson and B. Oberg, Selectivê nii hibition of herpesvirus deoxyribonucleic acid synthesis by acycloguanosine, 2’-fluoro5-iodo-aracytosine, and (E)-5-(2-bromovinyl)-2’-deoxyuridine, Antimicrob. Agents Chemother. 19: 927 (1981).CrossRefGoogle Scholar
  34. 34.
    E. De Clercq, On the mechanism of anti-herpes action of E-5-(2bromovinyl)-2’-deoxyuridine, in: “Herpetische Augenerkrankungen”, R. Sundmagher, ed., J.F.-Bergmann Verlag, München, p. 329 (1981).Google Scholar
  35. 35.
    J. Descamps and E. De Clercq, Specific phosphorylation of E-5(2-iodovinyl)-2’-deoxyuridine by herpes simplex virus-infected cells, J. Biol. Chem. 256: 5973 (1981).PubMedGoogle Scholar
  36. 36.
    J.A. Fyfe, Differential phosphorylation of (E)-5-(2-bromovinyl)2’-deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus, Mol. Pharmacol. 21: 432 (1982).PubMedGoogle Scholar
  37. 37.
    Y.-C. Cheng, G. Dutschman, E. Clercq, A.S. Jones, S.G. Rahim, G. Verhelst and R.T. Walker, Differential affinities of 5-(2halogenovinyl)-2’-deoxyuridines for deoxythymidine kinases of various origins, Mol. Pharmacol. 20: 230 (1981).PubMedGoogle Scholar
  38. 38.
    P.J. Barr, N.J. Oppenheimer and D.V. Santi, Thymidylate synthetase catalyzed conversions of E-5-(2-bromovinyl)-2’-deoxyuridylate, J. Biol. Chem.: submitted (1983).Google Scholar
  39. 39.
    H.S. Allaudeen, J.W. Kozarich, J.R. Bertino and E. De Clercq, On the mechanism of selective inhibition of herpesvirus replication by (E)-5-(2-bromovinyl)-2’-deoxyuridine, Proc. Natl. Acad. Sci. USA 78: 2698 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    H.S. Allaudeen, M.S. Chen, J.J. Lee, E. De Clercq and W.H. Prusoff, Incorporation of E-5-(2-halovinyl)-2’-deoxyuridines into deoxyribonucleic acids of herpes simplex virus type 1-infected cells, J. Biol. Chem. 257: 603 (1982).PubMedGoogle Scholar
  41. 41.
    W.R. Mancini, E. De Clercq and W.H. Prusoff, The relationship between incorporation of E-5-(2-bromovinyl)-2’-deoxyuridine into herpes simplex virus type 1 DNA with virus infectivity and DNA integrity, J. Biol. Chem. 258: 792 (1983).PubMedGoogle Scholar
  42. 42.
    J. Sagi, A. Czuppon, M. Kajtar, A. Szabolcs, A. Szemzö and L. Otvös, Modified polynucleotides. VI. Properties of a synthetic DNA containing the anti-herpes agent (E)-5-(2-bromovinyl)-2’deoxyuridine, Nucleic Acids Res. 10: 6051 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    E. De Clercq, J. Balzarini, J. Descamps, G.-F. Huang, P.F. Torrence, D.E. Bergstrom, A.S. Jones, P. Serafinowski, G. Verhelst and R.T. Walker, Antiviral, antimetabolic, and cytotoxic activities of 5-substituted 2’-deoxycytidines, Mol. Pharmacol. 21: 217 (1982).PubMedGoogle Scholar
  44. 44.
    L. Fox, M.J. Dobersen and S. Greer, Incorporation of 5-substituted analogs of deoxycytidine into DNA of herpes simplex virus-infected or -transformed cells without deamination to the thymidine analog, Antimicrob. Agents Chemother. 23: 465 (1983).PubMedCrossRefGoogle Scholar
  45. 45.
    I. Schildkraut, G.M. Cooper and S. Greer, Selective inhibition of the replication of herpes simplex virus by 5-halogenated analogues of deoxycytidine, Mol. Pharmacol. 11: 153 (1975).PubMedGoogle Scholar
  46. 46.
    M.J. Dobersen, M. Jerkofsky and S. Greer, Enz:natic basis for the selective inhibition of varicella-zostez virus by 5-halogenated analogues of deoxycytidine, J. Virol. 20: 478 (1976).PubMedGoogle Scholar
  47. 47.
    S.G. Rahim, M.J.H. Duggan, R.T. Walker, A.S. Jones, R.L. Dyer, J. Balzarini and E. De Clercq, Synthesis and biological properties of 2’-deoxy-5-vinyluridine and 2’-deoxy-5-vinylcytidine, Nucleic Acids Res. 10: 5285 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    P.F. Torrence, G.-F. Huang, M.W. Edwards, B. Bhooshan, J. Des-camps and E. De Clercq, 5-Substituted uracil arabinonucleosides as potential antiviral agents, J. Med. Chem. 22: 316 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Machida, S. Sakata, A. Kuninaka, H. Yoshino, C. Nakayama and M. Saneyoshi, In vitro antiherpesviral activity of 5-alkyl derivatives of 1-ß-D-arabinofuranosyluracil, Antimicrob. Agents Chemother. 16:158 (1979).Google Scholar
  50. 50.
    J. Reefschläger, G. Herrmann, D. Bärwolff, B. Schwarz, D. Cech and P. Langen, Antiherpesviral potential of (E)-5-(2-bromovinyl)- and 5-vinyl-1-ß-D-arabinofuranosyluracil and some other 5-substituted uracil arabinosyl nucleosides in two different cell lines, Antiviral Research: in press (1983).Google Scholar
  51. 51.
    G. Stening, B. Gotthammar, A. Larsson, S. Alenius, N.G. Johansson and B. Überg, Antiherpes activity of (E)-5-(1-propenyl)2’-deoxyuridine and 5-(1-propenyl)-1–13-D-arabinofuranosyluracil, Antiviral Research 1: 213 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    H. Machida, A. Kuninaka, H. Yoshino, K. Ikeda and Y. Mizuno, Antiherpesvirus activity and inhibitory action on cell growth of 5-alkenyl derivatives of 1–8-D-arabinofuranosyluracil, Antimicrob. Agents Chemother. 17: 1030 (1980).PubMedCrossRefGoogle Scholar
  53. 53.
    H. Machida, S. Sakata, A. Kuninaka and H. Yoshino, Antiherpes-viral and anticellular effects of 1–8-D-arabinofuranosyl-E-5(2-halogenovinyl)uracils, Antimicrob. Agents Chemother. 20: 47 (1981).PubMedCrossRefGoogle Scholar
  54. 54.
    E. De Clercq, R. Busson, L. Colla, J. Descamps, J. Balzarini and H. Vanderhaeghe, Antiviral activity of sugar-modified derivatives of (E)-5-(2-bromovinyl)-2’-deoxyuridine, in: “Current Chemotherapy and Immunotherapy”, P. Periti and G.G. Grassi, eds., American Society for Microbiology, Washington, D.C., p. 1062 (1982).Google Scholar
  55. 55.
    J. Descamps, R.K. Sehgal, E. De Clercq and H.S. Allaudeen, Inhibitory effect of E-5-(2-bromovinyl)-1–8-D-arabinofuranosyluracil on herpes simplex virus replication and DNA synthesis, J. Virol. 43: 332 (1982).PubMedGoogle Scholar
  56. 56.
    G.A. Gentry and J.F. Aswell, Inhibition of herpes simplex virus replication by araT, Virology 65: 294 (1975).PubMedCrossRefGoogle Scholar
  57. 57.
    J.F. Aswell, G.P. Allen, A.T. Jamieson, D.E. Campbell and G.A. Gentry, Antiviral activity of arabinosylthymine in herpesviral replication: mechanism of action in vivo and in vitro, Antimicrob. Agents Chemother. 12: 243 (1977).PubMedCrossRefGoogle Scholar
  58. 58.
    T.-S. Lin and Y.-S. Gao, Synthesis and biological activity of 5-(trifluoromethyl)- and 5-(pentafluoroethyl)pyrimidine nucleoside analogues, J. Med. Chem. 26: 598 (1983).PubMedCrossRefGoogle Scholar
  59. 59.
    T. Kulikowski, Z. Zawadzki, D. Shugar, J. Descamps and E. De Clercq, Synthesis and antiviral activities of arabinofuranosyl-5-ethylpyrimidine nucleosides. Selective antiherpes activity of 1-(8-D-arabinofuranosyl)-5-ethyluracil, J. Med. Chem. 22: 647 (1979).PubMedCrossRefGoogle Scholar
  60. 60.
    H. Machida, A. Kuninaka and H. Yoshino, Inhibitory effects of antiherpesviral thymidine analogs against varicella-zoster virus, Antimicrob. Agents Chemother. 21: 358 (1982).CrossRefGoogle Scholar
  61. 61.
    S. Shigeta, T. Yokota, T. Iwabuchi, M. Baba, K. Konno, M. Ogata and E. De Clercq, Comparative efficacy of antiherpes drugs against various strains of varicella-zoster virus, J. Infect. Dis. 147: 576 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    R.L. Miller, J.P. Iltis and F. Rapp, Differential effect of arabinofuranosylthymine on the replication of human herpesviruses, J. Virol. 23: 679 (1977).PubMedGoogle Scholar
  63. 63.
    T. Ooka and A. Calendar, Effects of arabinofuranosylthymine on Epstein-Barr virus replication, Virology 104: 219 (1980).PubMedCrossRefGoogle Scholar
  64. 64.
    W.E.G. Müller, R.K. Zahn, J. Arendes and D. Falke, Phosphorylation of arabinofuranosylthymine in non-infected and herpes-virus (TK+ and TK-)-infected cells, J. gen. Virol. 43: 261 (1979).PubMedCrossRefGoogle Scholar
  65. 65.
    A. Matsukage, K. Ono, A. Ohashi, T. Takahashi, C. Nakayama and M. Saneyoshi, Inhibitory effect of 1-D-arabinofuranosylthymine 5’-triphosphate and 1-ß-D-arabinofuranosylcytosine 5’-triphosphate on DNA polymerases from murine cells and oncornavirus, Cancer Res. 38: 3076 (1978).PubMedGoogle Scholar
  66. 66.
    K. Ono, A. Ohashi, M. Ogasawara, A. Matsukage, T. Takahashi, C. Nakayama and M. Saneyoshi, Inhibition of deoxyribonucleic acid polymerases from mutine cells and oncornavirus by 5-alkylated derivatives of 1-ß-D-arabinofuranosyluracil 5’-triphosphate: substituent effects on inhibitory action, Biochemistry 20: 5088 (1981).PubMedCrossRefGoogle Scholar
  67. 67.
    Y.-C. Cheng, G. Dutschman, J.J. Fox, K.A. Watanabe and H. Machida, Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases, Antimicrob. Agents Chemother. 20: 420 (1981).PubMedCrossRefGoogle Scholar
  68. 68.
    H. Machida, M. Ichikawa, A. Kuninaka, M. Saneyoshi and H. Yoshino, Effect of treatment with 1–0-D-arabinofuranosylthymine of experimental encephalitis induced by herpes simplex virus in mice, Antimicrob. Agents Chemother. 17: 109 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    E. De Clercq, J. Descamps, G. Verhelst, R.T. Walker, A.S. Jones, P.F. Torrence and D. Shugar, Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus, J. Infect. Dis. 141: 563 (1980).PubMedCrossRefGoogle Scholar
  70. 70.
    J.F. Aswell and G.A. Gentry, Cell-dependent antiherpesviral activity of 5-methylarabinosylcytosine, an intracellular ara-T donor, Ann. N.Y. Acad. Sci. 284: 342 (1977).PubMedCrossRefGoogle Scholar
  71. 71.
    Y.C. Cheng, B.—GO—z, J.P. Neenan, D.C. Ward and W.H. Prusoff, Selective inhibition of herpes simplex virus by 5’-amino-2’, 5’-dideoxy-5-iodouridine, J. Virol. 15: 1284 (1975).PubMedGoogle Scholar
  72. 72.
    T.-S. Lin, J.P. Neenan, Y.-C. Cheng, W.H. Prusoff and D.C. Ward, Synthesis and antiviral activity of 5- and 5’-substituted thymidine analogs, J. Med. Chem. 19: 495 (1976).PubMedCrossRefGoogle Scholar
  73. 73.
    T.-S. Lin, C. Chai and W.H. Prusoff, Synthesis and biological activities of 5-trifluoromethyl-5’-azido-2’,5’-dideoxyuridine and 5-trifluoromethyl-5’-amino-2’,5’-dideoxyuridine, J. Med. Chem. 19: 915 (1976).PubMedCrossRefGoogle Scholar
  74. 74.
    T.-S. Lin and W.H. Prusoff, Synthesis and biological activity of several amino analogues of thymidine, J. Med. Chem. 21: 109 (1978).PubMedCrossRefGoogle Scholar
  75. 75.
    R. Busson, L. Colla, H. Vanderhaeghe and E. De Clercq, Synthesis and antiviral activity of some sugar-modified derivatives of (E)-5-(2-bromovinyl)-2’-deoxyuridine, Nucleic Acids Res. Symposium Series no. 9: 49 (1981).Google Scholar
  76. 76.
    E. De Clercq, J. Descamps, J. Balzarini, T. Fukui and H.S. Allaudeen, Antiviral activity of the 3’-amino derivative of (E)-5-(2-bromovinyl)-2’-deoxyuridine, Biochem. J. 211: 439 (1983).PubMedGoogle Scholar
  77. 77.
    J.P. Iltis, T.-S. Lin, W.H. Prusoff and F. Rapp, Effect of 5iodo-5’-amino-2’,5’-dideoxyuridine on varicella-zoster virus in vitro, Antimicrob. Agents Chemother. 16: 92 (1979).PubMedCrossRefGoogle Scholar
  78. 78.
    M.S. Chen and W.H. Prusoff, Phosphorylation of 5-iodo-5’-amino2’,5’,dideoxyuridine by herpes simplex virus type 1 encoded thymidine kinase, J. Biol. Chem. 254: 10449 (1979).PubMedGoogle Scholar
  79. 79.
    M.S. Chen, D.C. Ward and W.H. Prusoff, Specific herpes simplex virus-induced incorporation of 5-iodo-5’-amino-2’,5’-dideoxyuridine into deoxyribonucleic acid, J. Biol. Chem. 251: 4833 (1976).PubMedGoogle Scholar
  80. 80.
    P.H. Fischer, M.S. Chen and W.H. Prusoff, The incorporation of 5-iodo-5’-amino-2’,5’-dideoxyuridine and 5-iodo-2’-deoxyuridine into herpes simplex virus DNA, Biochim. Biophys. Acta 606: 236 (1980).PubMedCrossRefGoogle Scholar
  81. 81.
    C.A. Puliafito, N.L. Robinson, D.M. Albert, D. Pavan-Langston, T.-S. Lin, D.C. Ward and W.H. Prusoff, Therapy of experimental herpes simplex keratitis in rabbits with 5-iodo-5’-amino-2’, 5’-dideoxyuridine, Proc. Soc. Exp. Biol. Med. 156: 92 (1977).PubMedGoogle Scholar
  82. 82.
    I.S. Sim, N. Stebbing and N.H. Carey, Studies on the antiviral activity of 5’-amino-2’,5’-dideoxy-5-iodouridine (AIU) against herpes viruses in vivo and in vitro, Antiviral Research 1: 393 (1981).CrossRefGoogle Scholar
  83. 83.
    K.A. Watanabe, U. Reichman, K. Hirota, C. Lopez and J.J. Fox, Nucleosides. 110. Synthesis and antiherpes virus activity of some 2’-fluoro-2’-deoxyarabinofuranosylpyrimidine nucleosides, J. Med. Chem. 22: 21 (1979).PubMedCrossRefGoogle Scholar
  84. 84.
    C. Lopez, K.A. Watanabe and J.J. Fox, 2’-Fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent, Antimicrob. Agents Chemother. 17: 803 (1980).PubMedCrossRefGoogle Scholar
  85. 85.
    K.A. Watanabe, T.-L. Su, R.S. Klein, C.K. Chu, A. Matsuda, M.W. Chun, C. Lopez and J.J. Fox, Nucleosides. 123. Synthesis of antiviral nucleosides: 5-Substituted 1-(2-deoxy-2-halogenoß-D-arabinofuranosyl)cytosines and -uracils. Some structure-activity relationships, J. Med. Chem. 26: 152 (1983).PubMedCrossRefGoogle Scholar
  86. 86.
    J.H. Burchenal, T-C. Chou, L. Lokys, R.S. Smith, K.A. Watanabe, T-L. Su and J.J. Fox, Activity of 2’-fluoro-5-methylarabinofuranosyluracil against mouse leukemias sensitive to and resistant to 1-ß-D-arabinofuranosylcytosine, Cancer Res. 42: 2598 (1982).PubMedGoogle Scholar
  87. 87.
    T.-C. Chou, J.H. Burchenal, F.A. Schmid, T.J. Braun, T.-L. Su, K.A. Watanabe, J.J. Fox and F.S. Philips, Biochemical effects of 2’-fluoro-5-methyl-1-ß-D-arabinofuranosyluracil and 2’fluoro-5-iodo-1-E-D-arabinofuranosylcytosine in mouse leukemic cells sensitive and resistant to 1-ß-D-arabinofuranosylcytosine. Cancer Res. 42: 3957 (1982).PubMedGoogle Scholar
  88. 88.
    W. Kreis, L. Damin, J. Colacino and C. Lopez, In vitro metabolism of 1-ß-D-arabinofuranosylcytosine and 1-ß-2’-fluor6arabino-5-iodocytosine in normal and herpes simplex type 1 virus-infected cells, Biochem. Pharmacol. 31:767 (1982).Google Scholar
  89. 89.
    J.L. Ruth and Y.-C. Cheng, Nucleoside analogues with clinical potential in antivirus chemotherapy. The effect of several thymidine and 2’-deoxycytidine analogue 5’-triphosphates on purifled human (a,ß) and herpes simplex virus (types 1, 2) DNA polymerases, Mol. Pharmacol. 20: 415 (1981).PubMedGoogle Scholar
  90. 90.
    T.-C. Chou, C. Lopez, J.M. Colacino, A. Grant, A. Feinberg, T.-L. Su, K.A. Watanabe, J.J. Fox and F.S. Philips, Mechanism of antiviral action of 2’-fluoro-arabinosyl pyrimidine nucleosides, Proc. of the American Association for Cancer Research 24: 1205 (1983).Google Scholar
  91. 91.
    T.-C. Chou, A. Feinberg, A.J. Grant, P. Vidal, U. Reichman, K. A. Watanabe, J.J. Fox and F.S. Philips, Pharmacological disposition and metabolic fate of 2’-fluoro-5-iodo-1-ß-D-arabinofuranosylcytosine in mice and rats, Cancer Res. 41: 3336 (1981).PubMedGoogle Scholar
  92. 92.
    W.M. Shannon, G. Arnett, L. Westbrook, Y.F. Shealy, C.A. O’Dell and R.W. Brockman, Evaluation of carbodine, the carbocyclic analog of cytidine, and related carbocyclic analogs of pyrimidine nucleosides for antiviral activity against human influenza type A viruses, Antimicrob. Agents Chemother. 20: 769 (1981).PubMedCrossRefGoogle Scholar
  93. 93.
    Y.F. Shealy, C.A. O’Dell, W.M. Shannon and G. Arnett, Carbocyclic analogues of 5-substituted uracil nucleosides: synthesis and antiviral activity, J. Med. Chem. 26: 156 (1983).PubMedCrossRefGoogle Scholar
  94. 94.
    E. Krajewska, E. De Clercq and D. Shugar, Virus-induced nucleoside kinase activities in primary rabbit kidney cells, in: “Translation of Natural and Synthetic Polynucleotides”, Â.B. Legocki, ed., University of Agriculture in Poznan, p. 105 (1977).Google Scholar
  95. 95.
    B. Rada and M. Dragun, Antiviral action and selectivity of 6azauridine, Ann. N.Y. Acad. Sci. 284: 410 (1977).PubMedCrossRefGoogle Scholar
  96. 96.
    H.E. Renis, 5,6-Dihydro-5-azathymidine: in vitro antiviral properties against human herpesviruses, Antimicrob. Agents Che-mother. 13: 613 (1978).CrossRefGoogle Scholar
  97. 97.
    G.E. Underwood and S.D. Weed, Efficacy of 5,6-dihydro-5-azathymidine against cutaneous herpes simplex virus in hairless mice, Antimicrob. Agents Chemother. 11: 765 (1977).PubMedCrossRefGoogle Scholar
  98. 98.
    H.E. Renis and E.E. Eidson,. Activities of 5,6-dihydro-5-azathymidine against herpes simplex virus infections in mice, Antimicrob. Agents Chemother. 15: 213 (1979).PubMedCrossRefGoogle Scholar
  99. 99.
    G.P. Khare, R.W. Sidwell, J.H. Huffman, R.L. Tolman and R.K. Robins, Inhibition of RNA virus replication in vitro by 3-deazacytidine and 3-deazauridine, Proc. Soc. Exp. Biol. Med. 140: 880 (1972).PubMedGoogle Scholar
  100. 100.
    W.M. Shannon, G. Arnett and F.M. Schabel, Jr., 3-Deazauridine: inhibition of ribonucleic acid virus-induced cytopathogenic effects in vitro. Antimicrob. Agents Chemother. 2: 159 (1972).PubMedCrossRefGoogle Scholar
  101. 101.
    W.M. Shannon, R.W. Brockman, L. Westbrook, S. Shaddix and F.M. Schabel, Jr., Inhibition of gross leukemia virus-induced plaque formation in XC cells by 3-deazauridine, J. Natl. Cancer Inst. 52: 199 (1974).PubMedGoogle Scholar
  102. 102.
    W.M. Shannon, Selective inhibition of RNA tumor virus replication in vitro and evaluation of candidate antiviral agents in vivo, Ann. N.Y. Acad. Sci. 284: 472 (1977).PubMedCrossRefGoogle Scholar
  103. 103.
    R.P. McPartland,M.C. Wang, A. Bloch and H. Weinfeld, Cytidine 5’-triphosphate synthetase as a target for inhibition by the antitumor agent 3-deazauridíne, Cancer Res. 34: 3107 (1974).Google Scholar
  104. 104.
    E. De Clercq, J. Descamps, P. De Somer and A. Holy, (S)-9-(2, 3-dihydroxypropyl)adenine: an aliphatic nucleoside analog with broad-spectrum antiviral activity, Science 200: 563 (1978).Google Scholar
  105. 105.
    G.B. Elion, P.A. Furman, J.A. Fyfe, P. de Miranda, L. Beauchamp and H.J. Schaeffer, Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine, Proc. Natl. Acad. Sci. USA 74: 5716 (1977).PubMedCrossRefGoogle Scholar
  106. 106.
    H.J. Schaeffer, L. Beauchamp, P. de Miranda, G.B. Elion, D.J. Bauer and P. Collins, 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group, Nature 272: 583 (1978).PubMedCrossRefGoogle Scholar
  107. 107.
    E. De Clercq and A. Holy, Antiviral activity of aliphatic nucleoside analogues: structure-function relationship, J. Med. Chem. 22: 510 (1979).PubMedCrossRefGoogle Scholar
  108. 108.
    J.L. Kelley, J.E. Kelsey, W.R. Hall, M.P. Krochmal and H.J. Schaeffer, Pyrimidine acyclic nucleosides. 1-((2-Hydroxyethoxy)methyl)pyrimídines as candidate antivirals, J. Med. Chem. 24: 753 (1981).PubMedCrossRefGoogle Scholar
  109. 109.
    P.M. Keller, J.A. Fyfe, L. Beauchamp, C.M. Lubbers, P.A. Furman, H.J. Schaeffer and G.B. Elion, Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic activities, Biochem. Pharmacol. 30: 3071 (1981).PubMedCrossRefGoogle Scholar
  110. 110.
    J.L. Kelley, M.P. Krochmal and H.J. Schaeffer, Pyrimidine acyclic nucleosides. 5-Substituted 1-((2-aminoethoxy)methyl)uracíls as candidate antivirals, J. Med. Chem. 24: 472 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Erik De Clercq
    • 1
  1. 1.Rega Institute for Medical ResearchKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations