Advertisement

The Experimental Evidence for Gamow-Teller Quenching

  • C. D. Goodman
  • S. D. Bloom

Abstract

The question of whether there is Gamow-Teller (GT) quenching relates in a fundamental way to our understanding of the nucleus and, thus, has been a subject of discussion for more than a decade.1–6 The question has acquired considerable new interest following the publication of new (p,n) data which allow us to get a view of “complete” GT strength functions7,8—complete in the sense of covering the excitation energy range containing all states with GT strength on the basis of conventional shell model calculations. Although, strictly speaking, GT quenching simply means that less spin-isospin transition strength is observed than is calculated on the basis of some model, the special significance of GT quenching is that it deals with intrinsic nucleon degrees of freedom, and the strength discrepancy violates the very essence of the model rather than fine details of the model.

Keywords

Beta Decay Shell Model Calculation Total Strength Calcium Isotope Quenching Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Blin-Stoyle and M. Tint, Phys. Rev. 160:803 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    M. Ericson, A. Figureau, and C. Thevenet, Phys. Lett. 45B:19 (1973).ADSGoogle Scholar
  3. 3.
    D. H. Wilkinson, Phys. Rev. C 7:930 (1973).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    D. H. Wilkinson, Nucl. Phys. A209:470 (1973).ADSGoogle Scholar
  5. 5.
    D. H. Wilkinson, Nucl. Phys. A231:365 (1974).ADSGoogle Scholar
  6. 6.
    M. Rho, Nucl. Phys. A231:493 (1974).ADSGoogle Scholar
  7. 7.
    C. D. Goodman, Spivn in: “The (p,n) Reaction and the Nucleon-Nucleon Force,” C. D. Goodman, S. M. Austin, S. D. Bloom, J. Rapaport, and G. R. Satchler, eds., Plenum, New York (1980).Google Scholar
  8. 8.
    C. D. Goodman, Nucl. Phys. A374:241C (1982).Google Scholar
  9. 9.
    R. J. Blin-Stoyle, Spivn in: “Mesons in Nuclei,” M. Rho and D. H. Wilkinson, eds., North-Holland, Amsterdam (1979), p. 5.Google Scholar
  10. 10.
    D. J. Horen, C D. Goodman, C. C Foster, C. A. Goulding, M. B. Greenfield, J. Rapaport, D. E. Bainum, E. Sugarbaker, T. G. Masterson, F. Petrovich, and W. G. Love, Phys. Lett. 95B:27 (1980).ADSGoogle Scholar
  11. 11.
    A. Harting, W. Weise, H. Toki, and A. Richter, Phys. Lett. 104B:261 (1981).ADSGoogle Scholar
  12. 12.
    J. B. McGrory and B. H. Wildenthal, Phys. Lett. 103B:173 (1981).ADSGoogle Scholar
  13. 13.
    W. Steffen, H.-D. Graf, W. Gross, D. Meuer, A. Richter, E. Spamer, O. Titze, and W. Knupfer, Phys. Lett. 95B:23 (1980).ADSGoogle Scholar
  14. 14.
    W. G. Love, private communication.Google Scholar
  15. 15.
    E. Oset and M. Rho, Phys. Rev. Lett. 42:47 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    D. Kurath, private communication.Google Scholar
  17. 17.
    B. H. Wildenthal and W. Chung, Spivn in: “Mesons in Nuclei,” op. cit. Ref. 9, p. 721.Google Scholar
  18. 18.
    T. Yamazaki, Spivn in: “Mesons in Nuclei,” op. cit. Ref. 9, p. 651.Google Scholar
  19. 19.
    C. D. Goodman, C. C. Foster, D. E. Bainum, S. D. Bloom, C. Gaarde, J. Larsen, C. A. Goulding, D. J. Horen, T. Masterson, S. Grimes, J. Rapaport, T. N. Taddeucci, and E. Sugarbaker, Phys. Lett. 107B:406 (1982).ADSGoogle Scholar
  20. 20.
    S. D. Bloom, C. D. Goodman, S. M. Grimes, and R. F. Hausman, Jr., Phys. Lett. 107B:336 (1981).ADSGoogle Scholar
  21. 21.
    S. D. Bloom and C. D. Goodman, unpublished.Google Scholar
  22. 22.
    S. Cohen and D. Kurath, Nucl. Phys. 73:1 (1965);CrossRefGoogle Scholar
  23. 22a. S. Cohen and D. Kurath, Nucl. Phys. 89:707 (1966).Google Scholar
  24. 23.
    A. Barroso and R. J. Blin-Stoyle, Nucl. Phys. A251:446 (1975);ADSGoogle Scholar
  25. 23a. R. J. Blin-Stoyle, Nucl. Phys. A254:353 (1975).ADSGoogle Scholar
  26. 24.
    R. J. Holt, H. E. Jackson, R. M. Laszewski, J. E. Monahan, and J. R. Specht, Phys. Rev. C 18:1962 (1978).ADSCrossRefGoogle Scholar
  27. 25.
    R. G. Johnson, B. L. Berman, K. G. McNeill, J. G. Woodworth, and J. W. Jury, Phys. Rev. C20:27 (1979).ADSGoogle Scholar
  28. 26.
    P. Doll, G. J. Wagner, K. T. Knopfle, and G. Mairie, Nucl. Phys. A263:210 (1976);ADSGoogle Scholar
  29. 26a.
    D. W. Devins, D. L. Friesel, W. P. Jones, A. C. Attard, S. F. Collins, G. G. Shute, B. M. Spicer, V.C. Officer, I. D. Svalbe, R. S. Henderson, and W. E. Dollhopf, Phys. Rev. C 24:59 (1981).ADSCrossRefGoogle Scholar
  30. 27.
    A. Bohr and B.R. Mottelson, Phys. Lett. 100B:10 (1981).ADSGoogle Scholar
  31. 28.
    T. N. Taddeucci, J. Rapaport, D. E. Bainum, C. D. Goodman, C. C. Foster, C. Gaarde, J. Larsen, C. A. Goulding, D. J. Horen, T. Masterson, and E. Sugarbaker, Phys. Rev. C 25:1094 (1982).ADSCrossRefGoogle Scholar
  32. 29.
    F. Petrovich Spivn in “the (p,n) Reaction and the Nucleon-Nucleon Force” op. cit. Ref. 7, p. 115.Google Scholar
  33. 30.
    G. Love Spivn in “The (p,n) Reaction and the Nucleon-Nucleon Force” op. cit. Ref. 7, p. 23.Google Scholar
  34. 31.
    This value is the weighted mean of two measurements: H. S. Wilson, R. W. Kavanagh and F. M. Mann, Phys. Rev. C 22:1696 (1980); A. M Hernandez and W. W. Daehnick, Phys. Rev. C 24:2235 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. D. Goodman
    • 1
  • S. D. Bloom
    • 2
  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.Lawrence Livermore National Laboratory and Department of Applied ScienceUniversity of CaliforniaLivermoreUSA

Personalised recommendations