Advertisement

Nucleus as a Chiral Filter: The Role of the Δ (1232)

  • Mannque Rho

Abstract

I describe how two different modes of chiral symmetry can be seen in nuclei. In particular, it is shown that the nuclear axial charge or more precisely the 0+ ↔ 0-, ΔT=1 transition at zero momentum transfer probes the nuclear configuration wherein the axial charge gA is effectively enhanced in nuclear medium due to soft pions, symptomatic of the Goldstone realization of chiral symmetry in the medium while the Gamow-Teller resonances probe the configuration wherein soft pions are no longer operative, suggesting an approach toward the Wigner realization of chiral symmetry. Using the celebrated Adler-Weisberger relation, it is argued that the observed ~ 50% quenching of the Gamow-Teller strength reflects the possibility that the Gamow-Teller operator sees the quarks inside the bag, blind to the Goldstone vacuum outside. Some implications on chiral phase transitions are also discussed.

Keywords

Nuclear Matter Chiral Symmetry Goldstone Mode Axial Charge Charge Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For review, M. Rho and G. E. Brown, Comments in Nuclear and Particle Physics 10, 201 (1981).Google Scholar
  2. 2.
    T. De Grand, R. L. Jaffe, K. Johnson and J. Kiskis, Phys. Rev. D12, 2060 (1975);ADSGoogle Scholar
  3. 2a.
    C.G. Callan, R. F. Dashen and D. J. Gross, Phys. Rev. D19, 1826 (1979)ADSGoogle Scholar
  4. 2a.
    G. E. Brown and M. Rho, Phys. Lett. 82B, 177 (1979).ADSGoogle Scholar
  5. 3.
    See e.g. V. De Alfaro, S. Fubini, G. Furlan and C. Rossetti, Currents in Hadron Physics, North-Holland Publishing Co. (1973) p. 468 ff.Google Scholar
  6. 4.
    G. E. Brown, 1981 Erice lectures on Nuclear Physics, Erice, Italy; 21–30 April 1981.Google Scholar
  7. 5.
    S. Weinberg, Physica (Utrecht) 96A, 327 (1979).Google Scholar
  8. 6.
    M. Rho, 1981 Erice Lectures on Nuclear Physics, Erice, Italy; 21–30 April 1981.Google Scholar
  9. 7.
    K. Kubodera, J. Delorme and M. Rho, Phys. Rev. Lett. 40, 755 (1978).ADSCrossRefGoogle Scholar
  10. 8.
    M. Bernheim et al., Phys. Rev. Lett. 46, 402 (1981).ADSCrossRefGoogle Scholar
  11. 9.
    See e.g. G. E. Brown, Nucl. Phys. A374, 63C (1982).ADSGoogle Scholar
  12. 10.
    P. A. M. Guichon and C. Samour, Nucí. Phys. A382, 461 (1982).ADSCrossRefGoogle Scholar
  13. 11.
    I. S. Towner and F. C. Khanna, Nucl. Phys. A372, 331 (1981).ADSGoogle Scholar
  14. 12.
    L. Palffy et al., Phys. Rev. Lett. 34, 212 (1975).ADSCrossRefGoogle Scholar
  15. 13.
    C. A. Cagliardi, G. T. Garvey, J. R. Wrobel and S. J. Freedman, Phys. Rev. Lett., 48, 914 (1982).ADSCrossRefGoogle Scholar
  16. 14.
    For review see C. D. Goodman, Nucl. Phys. A374, 241C (1982).ADSGoogle Scholar
  17. 15.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience Publishers; New-York 1967).Google Scholar
  18. 16.
    M. Rho, Phys. Rev. 161, 955 (1967).ADSCrossRefGoogle Scholar
  19. 17.
    M. Chemtob and M. Rho, Nucl. Phys. A163, 1 (1971).ADSGoogle Scholar
  20. 18.
    D. H. Wilkinson, Phys. Rev. C7, 930 (1973);MathSciNetADSGoogle Scholar
  21. 18a.
    for review, 1977 Les Houches Lectures, ed. by R. Baian, M. Rho and G. Ripka (North Holland Publishing Co., Amsterdam, 1978) Vol. II, p. 877.Google Scholar
  22. 19.
    M. Ericson, A. Figureau and C. Thevenet, Phys. Lett. 47B, 381 (1973)Google Scholar
  23. 19a.
    J. Delorme et al., Ann. of Phys. (N.Y.) 102, 272 (1976).ADSCrossRefGoogle Scholar
  24. 20.
    S. Barshay, G. E. Brown and M. Rho, Phys. Rev. Lett. 32, 787 (1974).ADSCrossRefGoogle Scholar
  25. 21.
    M. Rho, Nucl. Phys. A231, 493 (1974)ADSGoogle Scholar
  26. 21a.
    K. Ohta and M. Wakamatsu, Nucl. Phys. A234, 445 (1974).ADSGoogle Scholar
  27. 22.
    M. Rho, 1976 Erice Lectures on Nuclear Physics, in Prog. in Particle and Nucl. Phys. 1, 105 (1978).Google Scholar
  28. 23.
    J. Meyer-ter-Vehn, Physics Reports 74, 323 (1981).ADSCrossRefGoogle Scholar
  29. 24.
    G. E. Brown, S. O. Backman, E. Oset and W. Weise, Nucl. Phys. A286, 191 (1977).ADSGoogle Scholar
  30. 25.
    E. Oset and M. Rho, Phys. Rev. Lett. 42, 42 (1979)ADSCrossRefGoogle Scholar
  31. 25a.
    I. S. Towner and F. C. Khanna, Phys. Rev. Lett. 42, 51 (1979).ADSCrossRefGoogle Scholar
  32. 26.
    A. Bohr and B. R. Mottelson, Phys. Lett. 100B, 10 (1981)Google Scholar
  33. 26a.
    G.E. Brown and M. Rho, Nucl. Phys. A372, 397 (1981).ADSGoogle Scholar
  34. 27.
    A. Delia Selva and L. Masperi, Nuovo Cimento 50, 997 (1967).ADSCrossRefGoogle Scholar
  35. 28.
    See G. Baym, 1981 Erice Lectures on Nuclear Physics, Erice, Italy; 21–30 April 1981.Google Scholar
  36. 29.
    G. E. Brown and M. Rho, Ref. 2Google Scholar
  37. 29a.
    G. E. Brown, M. Rho and V. Vento, Phys. Lett. 84B, 383 (1979).Google Scholar
  38. 30.
    L. D. McLerran and B. Svetitsky, Phys. Rev. D24, 450 (1981) and references given there.ADSGoogle Scholar
  39. 31.
    R. D. Pisarski, Phys. Lett. 110B, 155 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Mannque Rho
    • 1
  1. 1.Service de Physique ThéoriqueCEN SACLAYGif-sur-Yvette CedexFrance

Personalised recommendations