Future Possibilities for (n,p) Studies at Intermediate Energies

  • F. P. Brady
  • C. M. Castaneda
  • J. L. Romero
  • V. R. Brown
  • C. H. Poppe


The study of giant resonances in nuclei via inelastic electron and hadron scattering is currently of great interest.1,2 These resonances are outstanding manifestations of nuclear vibrational motion in which an appreciable number of nucleons participate. Charge exchange reactions such as (p,n) and (n,p) offer powerful options for studying isovector excitations without interference from isoscalars. In general, if the target has isospin T then an isovector transition leaves the residual nucleus with isospin T-1, T, or T+1. (Refer to fig. 1.) The T-1 excitation requires charge exchange, as in (p,n), so that the 3-component T3=T (the charge-component) of isospin is also changed to T-1. Only for N=Z (T=0) nuclei are all isovector transitions to states of isospin T+l. In such reactions as (p,p’) and (e,e’) the isoscalar mode can also be excited and, indeed, these tend to be the strongest transitions at medium energies (≲ 100 MeV).


Neutron Beam Transition Density Symmetry Energy Intermediate Energy Gamow Teller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.E. Bertrand, Ann. Rev. Nucl. Sci. 26:468 (1976).Google Scholar
  2. 2.
    G.R. Satchler, Elementary Modes of Excitation in Nuclei LXIV Corso, Soc. Italiana de Fisica, Bologna, Italy (1977).Google Scholar
  3. 3.
    R.R. Doering et al., Phys. Rev. Lett. 35:1691 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    A. Galonsky et al., Phys. Lett. 74B:176 (1978).ADSGoogle Scholar
  5. 5.
    W.A. Sterrenburg et al., Phys. Rev. Lett. 45:1839 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    CD. Goodman et al., Phys. Rev. Lett. 44:1755 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    D.E. Bainum et al., Phys. Rev. Lett. 44:1751 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    D.H. Horen et al., Phys. Lett. 99B:27 (1980).ADSGoogle Scholar
  9. 9.
    J. Rapaport et al., Phys. Rev. C24:335 (1981).ADSGoogle Scholar
  10. 10.
    W.G. Love and M.A. Franey, Phys. Rev. C24:1073 (1981).ADSGoogle Scholar
  11. 11.
    C.D. Goodman et al., Phys, Lett, 107B:406 (1981).ADSGoogle Scholar
  12. 12.
    C. Gaarde et al., Nucl. Phys. A369:258 (1981).ADSGoogle Scholar
  13. 13.
    F.P. Brady and G.A. Needham in “The (p,n) Reaction and the Nucleon-Nucleon Force, edited by C.D. Goodman, S.M. Austin, S.D. Bloom, J. Rapaport, and G.R. Satchler, Plenum Press, N.Y. (1980) p. 121.Google Scholar
  14. 14.
    N.S.P. King and J.L. Ullmann, in “The (p,n) Reaction and the Nucleon-Nucleon Force, edited by C.D. Goodman, S.M. Austin, S.D. Bloom, J. Rapaport, and G.R. Satchler, Plenum Press, N.Y. (1980), p. 372.Google Scholar
  15. 15.
    J. Rapaport et al., B.A.P.S. 24:830 (1979).Google Scholar
  16. 15a.
    Taddeucci et al. Phys. Rev. C25:1094 (1982).ADSGoogle Scholar
  17. 16.
    S.M. Austin et al., Phys. Rev. Lett. 44:972 (1980).ADSCrossRefGoogle Scholar
  18. 17.
    F. Petrovich and W.G. Love, Proc. LAMPF Workshop on Pion Single Charge Exchange, Los Alamos, N.M., (1979) Doc. #La-7892C.Google Scholar
  19. 18.
    F. Petrovich, W.G. Love, and R.J. McCarthy, Phys. Rev. C21:1718 (1980).ADSGoogle Scholar
  20. 19.
    F. Petrovich, in “The (p,n) Reaction and the Nucleon-Nucleon Force, edited by C.D. Goodman, S.M. Austin, S.D. Bloom, J. Rapaport, and G.R. Satchler, Plenum Press, N.Y. (1980), page 121.Google Scholar
  21. 20.
    F.P. Brady, et al., Phys. Rev. Lett. 48:860 (1982).ADSCrossRefGoogle Scholar
  22. 21.
    D.F. Measday and J.N. Palmieri, Phys. Rev. 161:1071 (1967).ADSCrossRefGoogle Scholar
  23. 22.
    B.L. Berman et al., Phys. Rev. Lett. 15:727 (1965).ADSCrossRefGoogle Scholar
  24. 23.
    R.L. Bramblett et al., in Proc. Intl. Conf. on Photonuclear Reactions and Applications, Ed. B.L. Berman, (1973) p. 271.Google Scholar
  25. 24.
    J. Ahrens et al., Nucl. Phys. A251:479 (1975).ADSGoogle Scholar
  26. 25.
    M. Goldhaber and E. Teller, Phys. Rev. 74:1046 (1948).ADSCrossRefGoogle Scholar
  27. 26.
    D.P. Stahel, R. Jahn, G.J. Wozniak, and Joseph Cerny, Phys. Rev. C20:1680 (1980).ADSGoogle Scholar
  28. 27.
    G.A. Needham, Ph.D. Thesis, U.C. Davis (unpublished).Google Scholar
  29. 28.
    F. Ajzenburg-Selove, Nucl. Phys. A228:l (1974) and A230:1 (1979).Google Scholar
  30. 29.
    B.L. Berman and S.C. Fultz, Rev. Mod. Phys. 47:713 (1975).ADSCrossRefGoogle Scholar
  31. 30.
    J.L. Ullmann et al. (to be published).Google Scholar
  32. 31.
    V.R. Brown and V.A. Madsen, Phys. Rev. C17:1943 (1978).ADSGoogle Scholar
  33. 32.
    D.F. Measday, Nucl. Inst. and Methods 40:213 (1966).ADSCrossRefGoogle Scholar
  34. 33.
    R. Ö. Akyiiz and S. Fallieros, Phys. Rev. Lett. 27:1016 (1971).ADSCrossRefGoogle Scholar
  35. 34.
    S. Krewald, F. Osterfeld, J. Speth, and G.E. Brown, Phys. Rev. Lett. 46:103 (1981).ADSCrossRefGoogle Scholar
  36. 35.
    D.M. Patterson, R.R. Doering, and A. Galonsky, Nuclear Physics A263:26l (1976).Google Scholar
  37. 36.
    F. Osterfeld, S. Krewald, H. Dermawan, and J. Speth, Phys. Lett. 105B:257 (1981).ADSGoogle Scholar
  38. 37.
    A. Bohr and B. Mottelson, “Nuclear Structure” (Benjamin, Reading, Mass., 1975), Vol. II.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • F. P. Brady
    • 1
  • C. M. Castaneda
    • 1
  • J. L. Romero
    • 1
  • V. R. Brown
    • 2
  • C. H. Poppe
    • 2
  1. 1.Physics DepartmentUniversity of CaliforniaDavisUSA
  2. 2.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations