Advertisement

Dynamical Theory of Spin Excitations

  • J. Speth
  • S. Krewald
  • F. Osterfeld
  • Toru Suzuki

Abstract

We investigate in a systematic way magnetic resonances in light, medium and heavy mass nuclei. The numerical calculations have been performed within the framework of the extended theory of interacting Fermi systems. Here we incorporate explicitly the π-and ρ-exchange potential in a generalized spin-dependent particle-hole interaction. In addition we take into account the effect of the “dynamical theory of collective states” on the single particle energies (energy dependence of the effective mass). Special emphasis is given to the question whether the Δ(33)-resonance is responsible for the missing magnetic sum rule strength which experimentally was searched for in electron scattering and hadronic charge-exchange reactions with highly energetic protons. We point out that the inclusion of the (Pauli)-exchange terms in the particle-hole interaction strongly reduces the Δ(33)-hole quenching effect.

Keywords

Dynamical Theory Single Particle Energy Spin Excitation Single Particle Spectrum Theoretical Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R. Doering, A. Galonsky, D.M. Patterson, and G.F. Bertsch, Phys. Rev. Lett. 35:1961 (1975).CrossRefGoogle Scholar
  2. 2.
    D.E. Bainum et al., Phys. Rev. Lett. 44:1751 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    C.D. Goodman et al., Phys. Rev. Lett. 44:1755 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    C. Gaarde et al., Nucl. Phys. A369:258 (1981).ADSGoogle Scholar
  5. 5.
    K. Ikeda, S. Fujii, and J.I. Fujita, Phys. Lett. 3:271 (1961).ADSGoogle Scholar
  6. 6.
    M. Rho, Nucl. Phys. A231:493 (1974).ADSGoogle Scholar
  7. 7.
    K. Ohta and M. Wakamatsu, Nucl. Phys. A234:445 (1974).ADSGoogle Scholar
  8. 8.
    J. Delorme, M. Ericson, A. Figureau, and C. Thévenet, Ann. Phys. 102:273 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    E. Oset and M. Rho, Phys. Rev. Lett. 42:42 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    I.S. Towner and F.C. Khanna, Phys. Rev. Lett. 42:51 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    W. Knüpfer, M. Dillig, and A. Richter, Phys. Lett. 95B:349 (1980).ADSGoogle Scholar
  12. 12.
    A. Härting et al., Phys. Lett. 104B:261 (1981).ADSGoogle Scholar
  13. 13.
    H. Toki and W. Weise, Phys. Lett. 97B:12 (1980).ADSGoogle Scholar
  14. 14.
    S. Krewald, F. Osterfeld, J. Speth, and G.E. Brown, Phys. Rev. Lett. 46:103 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    A. Bohr and B.R. Mottelson, Phys. Lett. 100B:10 (1981).ADSGoogle Scholar
  16. 16.
    G.E. Brown and M. Rho, Nucl. Phys. A372:397 (1981).ADSGoogle Scholar
  17. 17.
    M. Ericson, A. Figureau, and C. Thévenet, Phys. Lett. 45B:19 (1973).ADSGoogle Scholar
  18. 18.
    F. Osterfeld, S. Krewald, T. Suzuki, and J. Speth, Phys. Rev. Lett. 49:11 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, Wiley, New York (1967).Google Scholar
  20. 20.
    J. Speth, E. Werner, and W. Wild, Phys. Rep. 33:127 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    J. Speth, L. Zamick, and P. Ring, Nucl. Phys. A232:l (1971).Google Scholar
  22. 22.
    A.B. Migdal, Rev. Mod. Phys. 50:107 (1978) and references therein.ADSCrossRefGoogle Scholar
  23. 23.
    G.E. Brown and W. Weise, Phys. Lett. 55B:1 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    J. Speth, V. Klemt, J. Wambach, and G.E. Brown, Nucl. Phys. A343:382 (1980).ADSGoogle Scholar
  25. 25.
    M.R. Anastasio and G.E. Brown, Nucl. Phys. A285:516 (1977).ADSGoogle Scholar
  26. 26.
    J. Lichtenstadt, J. Heisenberg, C.N. Papanicolas, C.P. Sargent, A.N. Courtemanche, and J.S. McCarthy, Phys. Rev. C20:497 (1979), andADSGoogle Scholar
  27. 26a.
    J. Lichtenstadt, J. Heisenberg, C.N. Papanicolas, C.P. Sargent, A.N. Courtemanche, and J.S. McCarthy, Phys. Rev. Lett. 40:1127 (1978).ADSCrossRefGoogle Scholar
  28. 27.
    S. Krewald and J. Speth, Phys. Rev. Lett. 45:417 (1980).ADSCrossRefGoogle Scholar
  29. 28.
    G.A. Rinker and J. Speth, Nucl. Phys. A306:360 (1978).ADSGoogle Scholar
  30. 29.
    J. Heisenberg, unpublished.Google Scholar
  31. 30.
    J.W. Negele and D. Vautherin, Phys. Rev. C5:1472 (1972).ADSGoogle Scholar
  32. 31.
    T. Suzuki, S. Krewald, and J. Speth, Phys. Lett. 107B:9 (1981).ADSGoogle Scholar
  33. 32.
    F. Osterfeld, T. Suzuki, and J. Speth, Phys. Lett. 99B:75 (1981), andGoogle Scholar
  34. 32a.
    F. Osterfeld, T. Suzuki, and J. Speth, Phys. Lett. 100B:519 (1981).Google Scholar
  35. 33.
    W.G. Love, in: The (p,n) Reaction and the Nucleon-Nucleon Force, C.D. Goodman et al., ed., Plenum, New York (1980) p. 30;Google Scholar
  36. 33a.
    F. Petrovich and W.G. Love, Nucl. Phys. A354:499c (1981).ADSGoogle Scholar
  37. 34.
    G.E. Brown, J. Speth, and J. Wambach, Phys. Rev. Lett. 46:1057 (1981).ADSCrossRefGoogle Scholar
  38. 35.
    G.F. Bertsch, C. Cha, H. Toki, Phys. Rev. C24:533 (1981).ADSGoogle Scholar
  39. 36.
    F. Osterfeld, S. Krewald, H. Dermawan, J. Speth, Phys. Lett. 105B:257 (1981).ADSGoogle Scholar
  40. 37.
    W.A. Sterrenburg et al., Phys. Rev. Lett. 45:1839 (1980).ADSCrossRefGoogle Scholar
  41. 38.
    N. Anantaraman et al., Phys. Rev. Lett. 46:1318 (1981).ADSCrossRefGoogle Scholar
  42. 39.
    M.M. Nagels et al., Nucl. Phys. B147:187 (1979).ADSGoogle Scholar
  43. 40.
    G.F. Chew and F.E. Low, Phys. Rev. 101:1570 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  44. 41.
    F. Osterfeld, FROST-MARS-CODE, unpublished.Google Scholar
  45. 42.
    B.D. Anderson et al., Phys. Rev. Lett. 45:599 (1980);CrossRefGoogle Scholar
  46. 42a.
    J.W. Watson et al., Phys. Rev. C23:2373 (1981);ADSGoogle Scholar
  47. 42b.
    R. Madey, Kent State University, private communication.Google Scholar
  48. 43.
    C. Gaarde et al., Phys. Lett. B in press.Google Scholar
  49. 44.
    F. Krmpotić and F. Osterfeld, Phys. Lett. 93B:218 (1980).ADSGoogle Scholar
  50. 45.
    W. Steffen et al., Phys. Lett. 95B:699 (1980).Google Scholar
  51. 46.
    K.E. Rehm et al., Phys. Lett. 114B:15 (1982).ADSGoogle Scholar
  52. 47.
    J.B. McGrory and B.H. Wildenthal, Phys. Lett. 103B:173 (1981).ADSGoogle Scholar
  53. 48.
    D.J. Horen et al., Phys. Lett. 95B:27 (1980);ADSGoogle Scholar
  54. 48a.
    D.J. Horen et al., Phys. Lett. 99B:383 (1981).ADSGoogle Scholar
  55. 49.
    C.D. Goodman, Proc. IX Int. Conf. on High Energy Physics and Nuclear Structure, Versailles, France, 6–10 July 1981, P. Catillon et al., ed., North-Holland, Amsterdam (1982).Google Scholar
  56. 50.
    A. Nadasen et al., Phys. Rev. C23:1023 (1981).ADSGoogle Scholar
  57. 51.
    C. Gaarde et al., Nucl. Phys. A334:248 (1980).ADSGoogle Scholar
  58. 52.
    G.E. Brown, S.-O. Bäckman, E. Oset, and W. Weise, Nucl. Phys. A286:191 (1977).ADSGoogle Scholar
  59. 53.
    G.F. Bertsch and T.T.S. Kuo, Nucl. Phys. A112:204 (1968).ADSGoogle Scholar
  60. 54.
    I. Hamamoto and P. Siemens, Nucl. Phys. A269:199 (1976).ADSGoogle Scholar
  61. 55.
    G.E. Brown, J.S. Dehesa, and J. Speth, Nucl. Phys. A330:290 (1979).ADSGoogle Scholar
  62. 56.
    G.E. Brown and S. Raman, Comments Nucl. Part. Phys. 9:79 (1980).Google Scholar
  63. 57.
    G.E. Brown and J. Speth, Neutron Capture Gamma-Ray Spectroscopy, R.E. Chrien and W.R. Kane, ed., Plenum Press, New York (1979).Google Scholar
  64. 58.
    F. Osterfeld, contribution in this volume.Google Scholar
  65. 59.
    E. Grecksch, M. Dillig, and M.G. Huber, Phys. Lett. 72B:11 (1977).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Speth
    • 1
  • S. Krewald
    • 1
  • F. Osterfeld
    • 1
  • Toru Suzuki
    • 2
  1. 1.Institut für KernphysikKernforschungsanlage JülichJülichWest Germany
  2. 2.Niels Bohr InstituteCopenhagen ØDenmark

Personalised recommendations