Camera Bulbi Anterior

New Vistas on a Classical Locus for Neural Tissue Transplantation
  • Lars Olson
  • Håkan Björklund
  • Barry J. Hoffer

Abstract

In experimental neurobiology, it is often desirable to decrease the level of complexity presented by the intact adult mammalian nervous system by various isolation procedures. In this chapter, we will summarize evidence that transplantation to the anterior chamber of the eye of rats and other rodents is an efficient means of obtaining such a decrease in complexity while preserving the functional integrity of the grafted tissues. A transplant can be defined for our purposes as a tissue piece in a living organism that has been completely physically isolated from its normal environment at some point during its life. When placed back into the original type of environment, it is referred to as a homotopic transplant; when grafted to other locations, it is called a heterotopic transplant. Thus, grafts of neuron-containing tissues to the anterior chamber of the eye are always considered heterotopic.

Keywords

Dopamine Cobalt Corticosteroid Rubber Penicillin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajmone-Marsan, C., 1972, Focal electrical stimulation, in: Expenmental Models of Epilepsy (D. Purpura, J. Penry, D. Tower, D. Woodbury, and R. Walter, eds.), pp. 147–172, Ravcn Press, New York.Google Scholar
  2. 2.
    Björklund, A., and Stenevi, U., 1977, Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia. I. Axonal regeneration along the hipppcampal fimbria, Brain Res. 135:259.CrossRefGoogle Scholar
  3. 3.
    Björklund, A., Stenevi, U., and Svendgaard, N. A., 1976, Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path, Nature (London) 262:787.CrossRefGoogle Scholar
  4. 4.
    Björklund, H., Palmer, M. R., Lind, B., Hoffer, B., and Olson, L., 1983, Postnatal lead exposure alters spontaneous cerebellar Purkinje neuron discharge, Environ. Res. 31:448.PubMedCrossRefGoogle Scholar
  5. 5.
    Björklund, H., Lind,B., Piscator, M., Hoffer, B., and Olson, L., 1981, Lead, Zinc, and copper levels in intraocular brain tissue grafts, brain, and blood of lead-exposed rats, Toxicol. Appl. Pharmacol. 60:424.PubMedCrossRefGoogle Scholar
  6. 6.
    Björklund, H., Olson, L., Seiger, Å., and Hoffer, B., 1980, Chronic lead and brain development: Intraocular brain grafts as a method to reveal regional and temporal effects in the central nervous system, Environ. Res. 22:224.PubMedCrossRefGoogle Scholar
  7. 7.
    Björklund, H., Palmer, M. R., Seiger, Å., Hoffer, B. J., and Olson, L., 1982, Survival and growth of neurons with enkephalin-like immunoreactivity in fetal brain areas grafted to the anterior chamber of the eye, Neuroscience. 10:1387.CrossRefGoogle Scholar
  8. 8.
    Björklund, H., Seiger, Å., Hoffer, B., and Olson, L., 1983, Trophic effects of brain areas on the developing cerebral cortex. I. Growth and histological organization of intraocular grafts, Dev. Brain. Res. 6:131.CrossRefGoogle Scholar
  9. 9.
    Chatagnon, P. A., 1952, Recherches sur la differenciation du neurone dans la greffe brephoplastique endocularie chez le rat blanc, Arch. Biol. 63:199.Google Scholar
  10. 10.
    Crutcher, K., 1982, Neonatal septal lesions result in sympathohippocampal innervation in the adult rat, Exp. Neurol. 76:1.PubMedCrossRefGoogle Scholar
  11. 11.
    Crutcher, K., and Davis, J. N., 1981, Sympathohippocampal sprouting is directed by a target trophic factor, Brain Res. 204: 410.PubMedCrossRefGoogle Scholar
  12. 12.
    Crutcher, K. A., and Davis, J. N., 1982, Target regulation of sympathetic sprouting in the rat hippocampal formation, Exp. Neurol. 75:347.PubMedCrossRefGoogle Scholar
  13. 13.
    Ebendal, T., Olson, L., Seiger, Å., and Hedlund, K.-O., 1980, Nerve growth factors in the rat iris, Nature (London) 286:25.CrossRefGoogle Scholar
  14. 14.
    Faldino, G., 1923, Ulteriore contributo allo studio dello sviluppodelle articolazioni, Chir. Organi Mov. 7:1.Google Scholar
  15. 15.
    Faldino, G., 1924, Sullo sviluppo dei tessuti embrionali omoplastici innestati nella camera anteriore dell occhio del coniglio, Arch. Sci. Biol. (Bologna) 5:328.Google Scholar
  16. 16.
    Freed, W., Morihisa, J., Spoor, E., Hoffer, B., Olson, L., Seiger, Å., and Wyatt, R., 1981, Transplanted adrenal chromaffine cells in rat brain reduce lesion-induced rotational behavior, Nature (London) 292:351.CrossRefGoogle Scholar
  17. 17.
    Freed, W., Perlow, M., Karoum, F., Seiger, Å., Olson, L., Hoffer, B., and Wyatt, R., 1980, Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: Long-term behavioral, biochemical, and histochemical studies, Ann. Neurol. 8:510.PubMedCrossRefGoogle Scholar
  18. 18.
    Freedman, R., Taylor, D., Seiger, Å., Olson, L., and Hoffer, B., 1979, Seizures and related epileptiform activity in hippocampus transplanted to the anterior chamber of the eye: Modulation by cholinergic and adrenergic input, Ann. Neurol. 6:281.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldowitz, D., Seiger, Å., and Olson, L., 1982, Anatomy of the isolated area dentata grown in the rat anterior eye chamber, J. Comp. Neurol. 208:382.PubMedCrossRefGoogle Scholar
  20. 20.
    Granholm, A.-C., Olson, L., and Seiger, Å., 1982, Intraocular development and adrenergic innervation of cortical and subcortical brain areas: Influence of thyroid hormone deficiency, Dev. Neurosci. 5:436.PubMedCrossRefGoogle Scholar
  21. 21.
    Granholm, A.-C., and Seiger, Å., 1981, Thyroid hormone dependency in immature but not mature grafted locus coeruleus neurons: Evidence from intraocular innervation of iris transplants, Med. Biol. 59:51.PubMedGoogle Scholar
  22. 22.
    Granholm, A.-C., and Seiger, Å., 1981, Thyroxine dependency of the developing substantia nigra: Evidence from intraocular grafting experiments in rats, Neurosci. Lett. 22:279.CrossRefGoogle Scholar
  23. 23.
    Hoffer, B., Olson, L., Freedman, R., and Seiger, Å., 1977, Seizures and related epileptiform activity in hippocampus transplanted to the eye. I. Characterization of seizures, interictal spikes, and synchronous activity, Exp. Neurol. 54:233.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffer, B., Olson, L., Seiger, Å., and Bloom, F., 1975, Formation of a functionl adrenergic input to intraocular cerebellar grafts: Ingrowth of inhibitory sympathetic fibers, J. Neurobiol. 6:565.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffer, B., Seiger, Å., Freedman, R., Olson, L., and Taylor, D. 1977, Electrophysiology and cytology of hippocampal formation transplants in the anterior chamber of the eye. II. Cholinergic mechanisms, Brain Res. 119:107.PubMedCrossRefGoogle Scholar
  26. 26.
    Hoffer, B., Seiger Å., Ljungberg, T., and Olson, L., 1974, Electrophysiological and cytological studies of brain homografts in the anterior chamber of the eye: Maturation of cerebellar cortex in oculo, Brain Res. 79:165.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoffer, B., Taylor, D., Baker, R., Deitrich, R., Seiger Å., and Olson, L., 1980, Ethanol withdrawal seizures in hippocampus transplanted to the anterior chamber of the eye, Life Sci. 26:239.PubMedCrossRefGoogle Scholar
  28. 28.
    Ljungdahl, Å., Seiger, Å., Hökfelt, T., and Olson, L., 1973, 3H-GABA uptake in growing cerebellar tissue: Autoradiography of intraocular transplants, Brain Res. 61:379.PubMedCrossRefGoogle Scholar
  29. 29.
    Loy, R., Milner, T. A., and Moore, R. Y., 1980, Sprouting of sympathetic axons in the hippocampal formation: Conditions necessary to elicit ingrowth, Exp. Neurol. 67:399.PubMedCrossRefGoogle Scholar
  30. 30.
    Loy, R., and Moore, R. Y., 1977, Anomalous innervation of the hippocampal formation by peripheral sympathetic axons following mechanical injury, Exp. Neurol. 57:645.PubMedCrossRefGoogle Scholar
  31. 31.
    Lund, R. D., and Lund, J. S., 1971, Synaptic adjustment after deafferentation of the superior colliculus of the rat, Science 171:804.PubMedCrossRefGoogle Scholar
  32. 32.
    Lynch, G., and Cotman, C W., 1975, The hippocampus as a model for studying anatomical plasticity in the adult brain, in: The Hippocampus: A Comprehensive Treatise, Vol. I (R. L. Issacson and K. H. Pribam, eds.) pp. 123–154, Plenum Press, New York.Google Scholar
  33. 33.
    Lynch, G., Rose, G., Gall, C., and Cotman, C. W., 1975, The response of the dentate gyrus to partial deafferentation, in: Golgi Centennial Symposium, Proceedings (M. Santini, ed.), pp. 305–317, Raven Press, New York.Google Scholar
  34. 34.
    May, R. M, 1930, La greffe dans l’oeil de rat blanc adulte du tissu cerebral de rat nouveau-ńe, Arch. Anat. Microsc. Morphol. Exp. 26:433.Google Scholar
  35. 35.
    May, R. M., 1945, Régeneration cérebrale provoquiée par la greffe intraoculaire simultannée de tissu cérebral de nouveau-ńe et de nerf sciatique chez la souris, Bull. Biol. Fr. Belg. 79:151.PubMedGoogle Scholar
  36. 36.
    May, R. M., 1949, Connexions entre des cellules cérebrales et des muscles de la cuive dans 1eut greffe bréphoplastique intraoculaire, simultanée chez la souris, Arch. Anat. Microsc. Morphol. Exp. 38:145.Google Scholar
  37. 37.
    May, R. M., 1952, La greffe bréphoplastique intra-oculaire simultanée de tissu cérebral et de thymus vivant ou mort chez la souris Arch. Anat. Microsc. Morphol. Exp. 41:237.Google Scholar
  38. 38.
    May, R. M., 1954, La greffe bréphoplastique intraoculaire du cervelet chez la souris, Arch. Anat. Microsc. Morphol. Exp. 43: 42.Google Scholar
  39. 39.
    Nygren, L. G., Olson, L., and Seiger, Å., 1977, Monoaminergic reinnervation of the transected spinal cord by homologous fetal brain grafts, Brain Res. 129:227.PubMedCrossRefGoogle Scholar
  40. 40.
    Olson, L., 1970, Fluorescence histochemical evidence for axonal growth and secretion from transplanted adrenal medullary tissue, Histochemie 22: 1.PubMedCrossRefGoogle Scholar
  41. 41.
    Olson, L., Björklund, H., Ebendal, T., Hedlund, K-O., and Hoffer, B., 1981, Factors regulating growth of catecholamine-containing nerves, as revealed by transplantation and explantation studies, in: Development of the Autonomic Nervous System (K. Elliott and G. Lawrenson, eds.) pp. 213–226, Pitman Medical, London.Google Scholar
  42. 42.
    Olson, L., Björklund, H., Hoffer, B. J., Palmer, M. R., and Seiger, Å., 1982, Spinal cord grafts: An intraocular approach to enigmas of nerve growth regulation, Brain Res. Bull. 9:519.PubMedCrossRefGoogle Scholar
  43. 43.
    Olson, L., Ebendal, T., and Seiger, Å., 1979, NGF and anti-NGF: Evidence against effects on fiber growth in locus coeruleus from cultures of perinatal CNS tissues, Dev. Neurosci. 2:160.PubMedCrossRefGoogle Scholar
  44. 44.
    Olson, L., Freedman, R., Seiger, Å., and Hoffer, B., 1977, Electrophysiology and cytology of hippocampal formation transplants in the anterior chamber of the eye. I. Intrinsic organization, Brain Res. 119:87.PubMedCrossRefGoogle Scholar
  45. 45.
    Olson, L., Hamberger, B., Hoffer, B., Miller, R., and Seiger, Å., 1981, Nerve fiber formation by grafted adult adrenal medullary cells, in: Chemical Neurotransmission, 75 Years. Second Nobel Conjerence (L. Stjärne, P. Hedqvist, H. Lagercrantz, and Å. Wennmalm, eds.), pp. 35–48, Academic Press, New York.Google Scholar
  46. 46.
    Olson, L., and Malmfors, T., 1970, Growth characteristics of adrenergic nerves in the adult rat: Fluorescence histochemical and 3H-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye, Acta Physiol. Scand. Suppl. 348:1.PubMedGoogle Scholar
  47. 47.
    Olson, L., and Seiger, Å., 1972, Brain tissue transplanted to the anterior chamber of the eye. I. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris, Z. Zellforsch, Mikrosk. Anat. 135:175.CrossRefGoogle Scholar
  48. 48.
    Olson, L., and Seiger, Å., 1974, Nerve growth specificity and regulation as revealed by intraocular brain tissue transplants, in: Dynamics of Degeneration and Growth in Neurons, (K. Fuxe, L. Olson, and Y. Zotterman, eds.), pp. 499–507, Pergamon Press, Elmsford, N.Y.Google Scholar
  49. 49.
    Olson, L., and Seiger, Å., 1975, Brain tissue transplanted to the anterior chamber of the eye. II. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons innervating the rat vas deferens, Cell Tissue Res. 158:141.PubMedCrossRefGoogle Scholar
  50. 50.
    Olson, L., and Seiger, Å., 1976, Locus coeruleus: Fiber growth regulation in oculo, Med. Biol. 54:142.PubMedGoogle Scholar
  51. 51.
    Olson, L., and Seiger, Å., 1980, A system of atypical catecholamine-containing nerve fibers in the rat iris present after total superior cervical ganglionectomy, Med. Biol. 58:94.PubMedGoogle Scholar
  52. 52.
    Olson, L., and Seiger, Å., 1983, Nerve fiber formation by the superior cervical ganglion, the adrenal medulla, and locus coeruleus: Similarities and differences as revealed by grafting, in: Autnomic Ganglia (L. G. Elfvin, ed.), pp 507–522 Wiley, New York.Google Scholar
  53. 53.
    Olson, L., Seiger, Å., and Ålund, M., 1978, Locus coeruleus fiber growth in oculo induced by trigeminotomy, Med. Biol. 56: 23.PubMedGoogle Scholar
  54. 54.
    Olson, L., Seiger, Å., and Ålund, M., 1978, How nerve fiber outgrowth from intraocular locus coeuleus grafts is controlled by the state of innervation of the host iris, in: Formshaping Movements in Neurogenesis (C.-O. Jacobson and T. Ebendal, eds.), pp. 245–256, Almqvist and Wiksell, StockholmGoogle Scholar
  55. 55.
    Olson, L., Seiger, Å., Ålund, M., Freedman, R., Hoffer, B., Taylor, D., Woodward, D., 1979, Intraocular brain grafts: A method to differentiate between intrinsic and extrinsic determinants of structural and functional development in the central nervous system, in: Neural Growth and Differentiation (E. Meisami and M. Brazier, eds.), pp. 223–235, Raven Press, New York.Google Scholar
  56. 56.
    Olson, L., Seiger, Å., Ebendal, T., and Hoffer, B., 1980, Comparisons of nerve fiber growth from three major catecholamine-producing cell systems: Adrenal medulla, superior cervical ganglion and locus coeruleus, in: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons (O. Eränkö, S. Soinila, and H. Päivärinta, eds.), pp. 27–34, Raven Press, New YorkGoogle Scholar
  57. 57.
    Olson, L., Seiger, Å., Freedman, R., and Hoffer, B., 1980. Chromaffine cells can innervate brain tissue: Evidence from intraocular double grafts, Exp. Neurol. 70:414.Google Scholar
  58. 58.
    Olson, L., Seiger, Å., Hoffer, B., and Taylor, D., 1979, Isolated catecholaminergic projections from subtantia nigra and locus coeruleus to caudate, hippocampus and cerebral cortex formed by intraocular sequential double brain grafts, Exp. Brain. Res. 35:47.PubMedCrossRefGoogle Scholar
  59. 59.
    Olson, L., Seiger, Å., and Strömberg, I. 1983, Intraocular transplantation in rodents: A detailed account of the procedure and examples of its use in neurobiology with special reference to brain tissue grafting, in: Advances in Cellular Neurobiology, Vol. 4 (S. Fedoroff, and L. Hertz, eds.), pp. 407–442, Academic Press, New York.Google Scholar
  60. 60.
    Olson, L., Seiger, Å., Taylor, D., and Hoffer, B., 1980, Conditions for adrenergic hyperinnervation in hippocampus. I. Histochemical evidence from intraocular double grafts, Exp. Brain Res. 39: 277.PubMedGoogle Scholar
  61. 61.
    Palmer, M. R., Björklund, H., Freedman, R., Taylor, D. A., Marwaha, J., Olson, L., Seiger, Å., and Hoffer, B. J., 1981, Permanent impairment of spontaneous Purkinje cell discharge in cerebellar grafts caused by chronic lead exposure, Toxicol. Appl. Pharmacol. 60:431.PubMedCrossRefGoogle Scholar
  62. 62.
    Palmer, M., Björklund, H., Olson, L., and Hoffer, B., 1983, Trophic effects of brain areas on the developing cerebral cortex. II. Electrophysiology of intraocular grafts, Dev. Brain Res. 6:141.CrossRefGoogle Scholar
  63. 63.
    Palmer, M. R., Sorensen, S. M., Freedman, R., Olson, L., Hoffer, B., and Seiger, Å., 1982, Differential ethanol sensitivity of intraocular cerebellar grafts in long-sleep and short-sleep mice, J. Pharmacol. Exp. Ther. 222:480.PubMedGoogle Scholar
  64. 64.
    Perlow, M., Freed, W., Hoffer, B., Seiger, Å., Olson, L., and Wyatt, R., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204:643.PubMedCrossRefGoogle Scholar
  65. 65.
    Raisman, G., 1969, Neuronal plasticity in the septal nuclei of the adult rat, Brain Res. 14:25.PubMedCrossRefGoogle Scholar
  66. 66.
    Raisman, G., and Field, P. M., 1973, A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei, Brain Res. 50:241.PubMedCrossRefGoogle Scholar
  67. 67.
    Sartori, C., 1926, Sugli innesti di tessuti embrionali, Arch. Ital. Chir. 15:3.Google Scholar
  68. 68.
    Schultzberg, M., Hökfelt, T., Olson, L., & x00C5;lund, M., Nilsson, G., Terenius, L., Elde, R., Goldstein, M., and Said, S., 1980, Substance P, enkephalin and somatostatin immunoreactive neurons in intestinal tissue transplanted to the anterior eye chamber, J. Auton. Nerv. Syst. 1:291.PubMedCrossRefGoogle Scholar
  69. 69.
    Seiger, Å., 1980, Growth interaction between locus coeruleus and trigeminal ganglion after intraocular double grafting, Med. Biol. 58:149.PubMedGoogle Scholar
  70. 70.
    Seiger, Å., and Granholm, A.-C., 1981, Thyroxin dependency of the developing locus coeruleus: Evidence from intraocular grafting experiments, Cell Tissue Res. 220:1.PubMedCrossRefGoogle Scholar
  71. 71.
    Seiger, Å., and Granholm, A.-C., 1982, Intraocular fiber growth of grafted locus coeruleus neurons: Sensory denervation counteracts alterations induced by thyroid hormone deficiency, Med. Biol. 60:159.PubMedGoogle Scholar
  72. 72.
    Seiger, Å., and Olson, L., 1977, Quantitation of fiber growth in transplanted central monoamine neurons, Cell Tissue Res. 179: 285.PubMedCrossRefGoogle Scholar
  73. 73.
    Seiger, Å., and Olson, L., 1975, Brain tissue transplanted to the anterior chamber of the eye. III. Substitution of lacking central noradrenaline input by host iris sympathetic fibers in the isolated cerebral cortex developed in oculo, Cell Tissue Res. 159: 325.PubMedCrossRefGoogle Scholar
  74. 74.
    Seiger, Å., and Olson, L., 1977, Reinitiation of directed nerve fiber growth in central monoamine neurons after intraocular maturation, Exp. Brain Res. 29:14.CrossRefGoogle Scholar
  75. 75.
    Seiger, Å., and Olson, L., 1977, Growth of locus coeruleus neurons in oculo independent of simultaneously present adrenergic and cholinergic nerves in the iris, Med. Biol. 55:209.PubMedGoogle Scholar
  76. 76.
    Seiger, Å., and Olson, L., 1978, Innervation of peripheral tissue grafts by locus coeruleus in oculo: Only partial correspondence with degree of sympathetic innervation, Brain Res. 139:233.PubMedCrossRefGoogle Scholar
  77. 77.
    Seiger, Å., Olson, L., and Farnebo, L.-O., 1976, Brain tissue transplanted to the anterior chamber of the eye. IV. Drug-modulated transmitter release in central monoamine nerve terminals lacking normal presynaptic receptors, Cell Tissue Res. 165:157.PubMedCrossRefGoogle Scholar
  78. 78.
    Stenevi, U., Björklund, A., and Svendgaard, N.-A., 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival, Brain Res. 224:1.CrossRefGoogle Scholar
  79. 79.
    Stenevi, U., and Björklund, A., 1978, Growth of vascular sympathetic axons into the hippocampus after lesions of the septo-hippocampal pathway: A pitfall in brain lesion studies, Neurosci. Lett. 7:219.PubMedCrossRefGoogle Scholar
  80. 80.
    Steward, O., 1982, Assessing the functional significance of lesion-induced neuronal plasticity, Int. Rev. Neurobiol. 23:197.PubMedCrossRefGoogle Scholar
  81. 81.
    Taylor, D., Freedman, R., Seiger, Å., Olson, L., and Hoffer, B. J., 1980, Conditions for adrenergic hyperinnervation in hippocampus. II. Electrophysiological evidence from intraocular double grafts, Exp. Brain Res. 39:289.PubMedCrossRefGoogle Scholar
  82. 82.
    Taylor, D., Hoffer, B., Zieglgänsberger, W., Siggins, G., Ling, N., Seiger, Å., and Olson, L., 1979, Opioid peptides excite pyramidal neurons and evoke epileptiform activity in hippocampal transplants in oculo, Brain Res. 176:135.PubMedCrossRefGoogle Scholar
  83. 83.
    Taylor, D., Seiger, Å., Freedman, R., Olson, L., and Hoffer, B., 1978, Functional reinnervation of transplants in the anterior chamber of the eye by the autonomic ground plexus of the iris, Proc. Natl. Acad. Sci. USA 75:1009.PubMedCrossRefGoogle Scholar
  84. 84.
    Tischler, A., Perlman, R., Nunnemacher, G., Morse G., DeLellis, R., Wolfe, M., and Sheard, B., 1982 Long-term effects of dexamethasone and nerve growth factor on adrenal medullary cells cultured from young adult rats, Cell Tissue Res. 225:525.PubMedCrossRefGoogle Scholar
  85. 85.
    Woodward, O., Hoffer, B., Olson, L., and Seiger, Å., 1977, Intrinsic and extrinsic determinants of dendritic development as revealed by Golgi studies of cerebellar and hippocampal transplants in oculo, Exp. Neurol. 57:984.PubMedCrossRefGoogle Scholar
  86. 86.
    Wuerthele, S. M., Freed, W. J., Olson, L., Morihisa, J., Spoor, L., Wyatt, R. J., and Hoffer, B. J., 1981, Effect of dopamine agonists and antagonists on the electrical activity of substantia nigra neurons transplanted into the lateral ventricle of the rat, Exp. Brain Res. 44:1.PubMedCrossRefGoogle Scholar
  87. 87.
    Yellin, H., 1976, Survival and possible trophic function of neonatal spinal cord grafts in the anterior chamber of the eye, Exp. Neurol. 51:579.PubMedCrossRefGoogle Scholar
  88. 88.
    Zalewski, A. A., 1971, The cellular immune reaction to transplanted sensory ganglia, Exp. Neurol. 32:218.CrossRefGoogle Scholar
  89. 89.
    Zalewski, A. A., 1971, The eflect of Ag-B locus compatibility and incompatibility on neuron survival in transplanted sensory ganglia in rats, Exp. Neurol. 33:576.PubMedCrossRefGoogle Scholar
  90. 90.
    Zalewski, A. A., 1972, Regeneration of taste buds after transplantation of tongue and ganglia grafts to the anterior chamber of the eye, Exp. Neurol. 35:519.PubMedCrossRefGoogle Scholar
  91. 91.
    Zalewski, A. A., 1972, Trophic function of homografted neurons of Ag-B-histocompatible rats, Transplantation 14:618.PubMedCrossRefGoogle Scholar
  92. 92.
    Zalewski, A. A., 1974, Neuronal and tissue specifications involved in taste bud formation, Ann. N.Y. Acad. Sci. 228:344.PubMedCrossRefGoogle Scholar
  93. 93.
    Zalewski, A. A., 1980, Survival, regeneration and trophic function of neurons in 1-year transplants of sensory ganglia, Exp. Neurol. 68:390.PubMedCrossRefGoogle Scholar
  94. 94.
    Zalewski, A. A., and Silvers, W. K., 1973, Trophic function of neurons in homografts of ganglia in immunologically tolerant rats, Exp. Neurol. 41:777.PubMedCrossRefGoogle Scholar
  95. 95.
    Zalewski, A. A., and Silvers, W. K., 1974, Survival of neurons in homografts of ganglia in adult rats neonatally treated with bone marrow or lymph node cells, Anat. Rec. 178:243.PubMedCrossRefGoogle Scholar
  96. 96.
    Zalewski, A. A., and Silvers, W. K., 1977, The long-term fate of neurons in allografts of ganglia in Ag-B compatible normal and immunologically tolerant rats, J. Neurobiol. 8:207.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lars Olson
    • 1
  • Håkan Björklund
    • 1
  • Barry J. Hoffer
    • 2
  1. 1.Department of HistologyKarolinska InstituteStockholmSweden
  2. 2.Department of PharmacologyUniversity of Colorado Medical CenterDenverUSA

Personalised recommendations