Neural Transplants in Lower Vertebrates

  • William A. Harris


Taken as a developmental problem, the nervous system in higher metazoans represents the most complex example of pattern formation in all of biology. An understanding of the mechanisms regulating neural ontogeny cannot simply come from descriptive anatomy or physiology. As the early experimental embryologists realized, hypotheses about development may be born of observations on normal embryos, but experimental manipulations are necessary to prove them.1–3 The manipulations often take the classical form of tissue transplantation, and in the nervous system the results are analyzed with modern techniques of electrophysiology and neuroanatomical tracing. The power of combining these approaches has been enormously successful in generating basic rules of causal neurogenesis, even to the point of suggesting molecular mechanisms. Transplantation studies cannot, however, discover the molecules involved. The remarkable development of the topographic retinotectal projection as revealed by experimental manipulations in vivo has attracted many groups interested in the molecular biology of the formation of specific neural connections.4–9 If, as soon seems likely, theories derived from transplantation experiments are substantiated biochemically, it will constitute a major break-through in our understanding of the brain.


Optic Nerve Optic Tectum Lower Vertebrate Retinal Projection Retinal Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Detwiler, S. R., 1936, Neuroembryology, Hafner, New York.Google Scholar
  2. 2.
    Huxley, J. S., and DeBeer, G. R., 1934, The Elements of Experimental Embrylogy, Gambridge University Press, London.Google Scholar
  3. 3.
    Spemann, H., 1938, Development and Induction, Yale University Press, New Haven, Conn.Google Scholar
  4. 4.
    Balsamo, J., McDonough, J., and Lilien, J., 1976, Retinal-tectal connections in the embryonic chick: Evidence for regionally specific cell surface components which mimic the pattern of innervation, Dev. Biol. 44:338.CrossRefGoogle Scholar
  5. 5.
    Barbera, A. J., 1975, Adhesive recognition between developing retinal cells and optic tecta of the chick embryo, Dev. Biol. 47:167.CrossRefGoogle Scholar
  6. 6.
    Letourneau, P. C., 1982, Nerve fiber growth and its regulation by extrinsic factors, in: Neuronal Development (N. C. Spitzer, ed.), pp. 213–254, Plenum Press, New York.Google Scholar
  7. 7.
    Gottlieb, D. I., and Glaser, L., 1980, Cellular recognition during neural development, Annu. Rev. Neurosci. 3:303.PubMedCrossRefGoogle Scholar
  8. 8.
    Marchase, R. B., 1977, Biochemical investigations of retinotectal adhesive specificity, J. Cell Biol. 75:237.PubMedCrossRefGoogle Scholar
  9. 9.
    Trisler, C. D., Scheider, M. D., and Niremberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position, Proc. Natl. Acad. Sci. USA 78:2143.CrossRefGoogle Scholar
  10. 10.
    Holt, C. E., 1982, The development of the eye and its central conections, Ph.D. thesis, King’s College, London University. Biophysics.Google Scholar
  11. 11.
    Holt, C. E., and Harris, W. A., Order in the initial retinotectal map in Xenopus: A new technique for labelling growing nerve fibers, Nature 301:150.Google Scholar
  12. 12.
    Fujisawa, H., Tani, H., Watanabe, K., and Ibata, Y., 1982, Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connections in the newt, Dev. Biol. 90:43.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson, H., Edwards, J. S., and Palka, J., 1980, Developmental neurobiology of invertebrates, Annu. Rev. Neurosci. 3:97.PubMedCrossRefGoogle Scholar
  14. 14.
    Palka, J., 1982, Genetic manipulation of sensory pathways in Drosophila, in: Neuronal Development (N. C. Spitzer, ed.), pp. 121–170, Plenum Press, New York.Google Scholar
  15. 15.
    Hall, J. C., Greenspan, R. J., and Harris, W. A., 1982, Genetic Neurobiology, MIT Press, Cambridge, Mass.Google Scholar
  16. 16.
    Model, P. G., 1982, Prospective forebrain-midbrain from axolotl neurulae can be reprogrammed to differentiate as Mauthner cell-containing medulla, Dev. Brain Res. 3:109.CrossRefGoogle Scholar
  17. 17.
    Jacobson, C. O., 1964, Motor nuclei, cranial nerve roots, and fiber pattern in the medulla oblongata after reversal experiments on the neural plate of axolotl larvae. I. Bilateral operations, Zool. Bidr. Uppsala 36:73.Google Scholar
  18. 18.
    Cooke, J., 1980, Early organization of the central nervous system: Form and pattern, Curr. Top. Dev. Biol. 15:373.PubMedCrossRefGoogle Scholar
  19. 19.
    Stone, L. S., 1960, Polarization of the retina and development of vision, J. Exp. Zool. 145:85.CrossRefGoogle Scholar
  20. 20.
    Hunt, R. K., and Jacobson, M., 1972, Development and stability of positional information in Xenopus retinal ganglion cells, Proc. Natl. Acad. Sci. USA 69:780.PubMedCrossRefGoogle Scholar
  21. 21.
    Gaze, R. M., Feldman, J. D., Cooke, J., and Chung, S.-H., 1979, The orientation of the visual map in Xenopus: Developmental aspects, J. Embryol. Exp. Morphol. 53:39.PubMedGoogle Scholar
  22. 22.
    Sharma, S. C., and Hollyfield, J. G., 1980, Specification of retinotectal connections during the development of the toad Xenopus laevis, J. Embryol. Exp. Morphol. 55:77.PubMedGoogle Scholar
  23. 23.
    Goldberg, S., 1976, Polarization of the avian retina: Ocular transplantation studies, J. Comp. Neurol. 168:379.PubMedCrossRefGoogle Scholar
  24. 24.
    Grant, P., and Rubin, E., 1980, Disruption of optic fiber growth following eye rotation in Xenopus laevis embryos, Nature (London) 287:845.CrossRefGoogle Scholar
  25. 25.
    Katz, M. J., and Silver, J., 1981, Inverted Xenopus eye primordia develop into anatomically inverted eyes, Dev. Biol. 86:510.PubMedCrossRefGoogle Scholar
  26. 26.
    Holt, C. E., 1980, Cell movements in Xenopus eye development, Nature (London) 287:850.CrossRefGoogle Scholar
  27. 27.
    Beach, D. A., and Jacobson, M., 1979, Patterns of cell proliferation in the retina of the clawed frog during development, J. Comp. Neurol. 183:603.PubMedCrossRefGoogle Scholar
  28. 28.
    Yntema, C. L., 1955, Ear and nose, in Analysis of Development (B. H. Willier, P. Weiss, and V. Hamburger, eds.), pp. 415–427, Saunders, Philadelphia.Google Scholar
  29. 29.
    Harrison, R. G., 1935, Factors concerned in the development of the ear in Amblystoma punctatum, Anat. Rec. 64(Suppl. 11):38.Google Scholar
  30. 30.
    Harrison, R. G., 1936a, Relations of symmetry in the developing ear of Amblystoma punctatum, Proc. Natl. Acad. Sci. USA 22:238.PubMedCrossRefGoogle Scholar
  31. 31.
    Harrison, R. G., 1936, Relations of symmetry in the developing embryo, Coll. Net. 11:217.Google Scholar
  32. 32.
    Harrison, R. G., 1945, Relations of symmetry in the developing embryo, Trans. Conn. Acad. Arts Sci. 36:277.Google Scholar
  33. 33.
    Harrison, R. G., 1921, On relations of symmetry in transplanted limbs, J. Exp. Zool. 32:1.CrossRefGoogle Scholar
  34. 34.
    Harrison, R. G., 1925, The effect of reversing the medio-lateral or transverse axis of the forelimb bud in the salamander embryo (Amblystoma punctatum Linn.), Arch. Entwicklungsmech. Org. 104:469.CrossRefGoogle Scholar
  35. 35.
    Jacobson, C. O., 1976, Motor nuclei, cranial nerve roots, and fiber pattern in the medulla oblongata after reversal experiments on the neural plate of axolotl larvae. II. Unilateral operation, Z.O.O.N. 4:87.Google Scholar
  36. 36.
    Hibbard, E., 1965, Orientation and directed growth of Mauthner’s cell axons from duplicated vestibular nerve roots, Exp. Neurol. 13:289.PubMedCrossRefGoogle Scholar
  37. 37.
    Luna, E., 1915, Ricerche sperimentali gulla morfologia dell’organo dell’olfatto negli amfibi, Arch. Ital. Anat. Embriol. 14:609.Google Scholar
  38. 38.
    Zwilling, E., 1940, An experimental analysis of the development of the anuran olfactory organ, J. Exp. Zool. 84:291.CrossRefGoogle Scholar
  39. 39.
    Bell, E. T., 1907, Some experiments on the development and regeneration of the eye and the nasal organ in frog embryos, Arch. Entwicklungsmech. Org. 23:457.CrossRefGoogle Scholar
  40. 40.
    Burr, H. S., 1916a, The effects of removal of the nasal pits in Amblystoma embryos, J. Exp. Zool. 20:27.CrossRefGoogle Scholar
  41. 41.
    Stout, R. P., and Graziadei, P. P. C., 1980, Influence of the olfactory placode on the development of the brain in Xenopus laevis (Daudin). I. Axonal growth and connections of the transplanted olfactory placode, Neuroscience 5:2175.PubMedCrossRefGoogle Scholar
  42. 42.
    Constantine-Paton, M., and Capranica, R. R., 1976, Axonal guidance of developing optic nerves in the frog. I. Anatomy of the projection from the transplanted eye primordia, J. Comp. Neurol. 170:17.PubMedCrossRefGoogle Scholar
  43. 43.
    Harris, W. A., 1980, The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders, J. Comp. Neurol. 194:303.PubMedCrossRefGoogle Scholar
  44. 44.
    Harrison, R. G., 1907, Experiments in transplanting limbs and their bearing upon the problems of the development of nerves, J. Exp. Zool. 4:239.CrossRefGoogle Scholar
  45. 45.
    Harrison, R. G., 1904, Neue versuche und beobachtungen über die entwicklung fer peripheren nerven der wirbeltiere, Sitzungsber. Neiderrh. Ges. Natur. Heilkunde. Bonn. Sitzung 11:1.Google Scholar
  46. 46.
    Harrison, R. G., 1924, Neuroblast versus sheath cell in development of peripheral nerves, J. Comp. Neurol. 37-.123.CrossRefGoogle Scholar
  47. 47.
    Harrison, R. G., 1924, Some unexpected results of heteroplastic transplantation of limbs, Proc. Natl. Acad. Sci. USA 10:69.PubMedCrossRefGoogle Scholar
  48. 48.
    Constantine-Paton, M., and Capranica, R. R., 1975, Central projection of optic tract from translocated eyes in the leopard frog (Rana pipiens), Science 189:480.PubMedCrossRefGoogle Scholar
  49. 49.
    Harris, W. A., 1980, Regions of the brain influencing the projection of developing optic tracts in salamander, J. Comp. Neurol. 194:319.PubMedCrossRefGoogle Scholar
  50. 50.
    Harris, W. A., 1982, The transplantation of eyes to genetically eyeless salamanders: Visual projections and somatosensory interactions, J. Neurosci. 2:339.PubMedGoogle Scholar
  51. 51.
    Burr, H. S., 1924, Some experiments on the transplantation of the olfactory placode in Amblystoma. I. An experimentally produced aberrant cranial nerve, J. Comp. Neurol. 37:455.CrossRefGoogle Scholar
  52. 52.
    Burr, H. S., 1930, Hyperplasia in the brain of Amblystoma, J. Exp. Zool. 55:171.CrossRefGoogle Scholar
  53. 53.
    David, W. S., and Model, P. G., 1982, Synapse localization is unaffected by displacement of a major afferent projection, Neurosci. Abstr. 8:436.Google Scholar
  54. 54.
    Adler, R., Manthorpe, M., Skaper, S., and Varon, S., 1981, Polyornithine-attached neurite-promoting factors (PNPFs) culture sources and responsive neurons, Brain Res. 206:129.PubMedCrossRefGoogle Scholar
  55. 55.
    Collins, F., 1980, Neurite outgrowth induced by the substrate associated material from nonneuronal cells Dev. Biol. 79:247.PubMedCrossRefGoogle Scholar
  56. 56.
    Coughlin, M. D., Bloom, E. M., and Black, I. B., 1981, Characterization of a neuronal growth factor from mouse heart cell-conditioned medium, Dev. Biol. 82:56.PubMedCrossRefGoogle Scholar
  57. 57.
    Lander, A. D., Fujii, D. K., Gospodarowicz, D., and Reichardt, L. F., 1982, Characterization of a factor that promotes neurite outgrowths: evidence linking activity to a heparin sulfate proteoglycan, J. Cell. Biol. 94:574.PubMedCrossRefGoogle Scholar
  58. 58.
    Turner, J. E., Schwab, M. E., and Thoenen, H., 1982, Nerve growth factor stimulates neurite outgrowth from goldfish retinal explants: The influence of a prior lesion, Dev. Brain Res. 4:59.CrossRefGoogle Scholar
  59. 59.
    Constatine-Paton, M., 1978, Central projections of anuran optic nerves penetrating hindbrain or spinal cord regions of the neural tube, Brain Res. 158:31.CrossRefGoogle Scholar
  60. 60.
    Katz, M. J., and Lasek, R. L., 1978, Eyes transplanted to tadpole tails send axons rostrally in two spinal cord tracts, Science 199:204.CrossRefGoogle Scholar
  61. 61.
    Giorgi, P. P., and Van der Loos, H., 1978, Axons from eyes grafted in Xenopus can grow into the spinal cord and reach the optic tectum, Nature (London) 275:746.CrossRefGoogle Scholar
  62. 62.
    Burr, H. S., 1932, An electrodynamic theory of development suggested by studies of proliferation rates in the brain of Amblystoma, J. Comp. Neurol. 56:347.CrossRefGoogle Scholar
  63. 63.
    Frost, D. O., 1981, Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster, J. Comp. Neurol. 203:227.PubMedCrossRefGoogle Scholar
  64. 64.
    Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York.Google Scholar
  65. 65.
    Swisher, J. E., and Hibbard, E., 1967, The course of Mauthner axons in Janus-headed Xenopus embryos, J. Exp. Zool. 165:433.CrossRefGoogle Scholar
  66. 66.
    Katz, M. J., and Lasek, R. J., 1981, Substrate pathways demonstrated by transplanted Mauthner axons, J. Comp. Neurol. 195:627.PubMedCrossRefGoogle Scholar
  67. 67.
    Katz, M. J., Lasek, R. J., and Nauta, H. J. W., 1980, Ontogeny of substrate pathways and the origin of the neural circuit pattern, Neuroscience 5:821.PubMedCrossRefGoogle Scholar
  68. 68.
    Bate, C. M., 1976, Pioneer neurones in an insect embryo, Nature (London) 260:54.CrossRefGoogle Scholar
  69. 69.
    Piatt, J., 1944, Experiments on the decussation and course of Mauthner’s fibers in Amblystoma punctatum, J. Comp. Neurol. 80:335.CrossRefGoogle Scholar
  70. 70.
    Guillery, R. W., 1974, Visual pathways in albinos, Sci. Am. 230:44.PubMedCrossRefGoogle Scholar
  71. 71.
    Guillery, R. W., and Updyke, B. V., 1976, Retinofugal pathways in normal and albino axolotls, Brain Res. 109:235.PubMedCrossRefGoogle Scholar
  72. 72.
    Cole, J., Dolin, R., Fahrner, K., Gallenson, N., Hall, J., and Harris, W., 1982, Retinofugal pathways from albino eyes embryonically transplanted to normal and albino axolotls, Dev. Brain Res. 5:346.CrossRefGoogle Scholar
  73. 73.
    Twitty, V. C., 1937, Experiments on the phenomenon of paralysis produced by a toxin occurring in Triturus embryos, J. Exp. Zool. 76:67.CrossRefGoogle Scholar
  74. 74.
    Spitzer, N. C., 1979, Ion channels in development. Annu. Rev. Neurosci. 2:363.PubMedCrossRefGoogle Scholar
  75. 75.
    Kung, C., 1979, Biology and genetics of Paramecium behavior, in: Neurogenetics (X. O. Breakfield, ed.), pp. 1–26, Elsevier/North-Holland, Amsterdam.Google Scholar
  76. 76.
    Nuccitelli, R., Poo, M.-M., and Jaffee, L. F., 1977, Relations between amoeboid movement and membrane-controlled electrical currents, J. Gen. Physwl. 69:743.CrossRefGoogle Scholar
  77. 77.
    Freeman, J. A., Mayes, B., Snipes, G. J., and Wiskwo, J. P., 1982, Real-time measurements of minute neuronal currents with a circularly vibrating microprobe, Neurosci. Abstr. 8:302.Google Scholar
  78. 78.
    Meiri, H., Spira, M. E, and Parnas, I., 1981, Membrane conductance and action potential of a regnerating axonal tip, Science 211:709.PubMedCrossRefGoogle Scholar
  79. 79.
    Grinvald, A., and Farber, I. C., 1981, Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam. Science 212:1164.PubMedCrossRefGoogle Scholar
  80. 80.
    Huttner, S. L., and O’Lague, P. H., 1982, Excitability of growth cones of mutinucleate PC-12 cells, Neurosci. Abstr. 8:125.Google Scholar
  81. 81.
    Gunderson, R. W., and Barrett, J. N., 1980, Characterization of the turning response of dorsal root neurites toward nerve growth factor, J. Cell Biol. 87:546.CrossRefGoogle Scholar
  82. 82.
    Grafstein, B., and Meiri, H., 1980, Increased rate of regeneration in goldfish optic axons resulting from intraocular injection of calcium ionophore A23187, Neurosci. Abstr. 6:387.Google Scholar
  83. 83.
    Law, M. I., and Constantine-Paton, M., 1981, Anatomy and physiology of experimentally produced striped tecta, J. Neurosci. 1:741.PubMedGoogle Scholar
  84. 84.
    Horder, T., and Martin, K. A. C., 1978, Morphogenetics as an alternative to chemospecificity in the formation of nerve connections, in: Cell—Cell Recognition (A. S. G. Curtis, ed.), J. Embryol. Exp. Morphol. 46:147.Google Scholar
  85. 85.
    Fawcett, J. W., and Gaze, R. M., 1982, The retinotectal fiber pathways from normal and compound eyes in Xenopus, J. Embryol. Exp. Morphol. 72:19PubMedGoogle Scholar
  86. 86.
    Anderson, H., 1978, Postembryonic development of the visual system of the locust Schistocerca gregaria. II. An experimental investigation of the formation of the retina-lamina projection, J. Embryol. Exp. Morphol. 46:147.PubMedGoogle Scholar
  87. 87.
    Macagno, E. R., 1981, Cellular interactions and pattern formation in the development of the visual system in Daphnia magna (Crustacea, Branchiopoda). II. Induced retardation of optic axon ingrowth results in a delay in laminar neuron differentiation, J. Neurosci. 1:945.PubMedGoogle Scholar
  88. 88.
    Feldman, J. D., Gaze, R. M., and Keating, M. J., 1971, Delayed innervation of the optic tectum during development in Xenopus laevis, Exp. Brain Res. 14:16.PubMedCrossRefGoogle Scholar
  89. 89.
    Chung, S.-H., Gaze, R. M., and Sterling, R. V., 1973, Abnormal visual function in Xenopus following stroboscopic illumination, Nature New Biol. 246:186.PubMedCrossRefGoogle Scholar
  90. 90.
    Schmidt, J. T., and Edwards, D. L., 1982, Activity sharpens the map during the regeneration of the retinotectal projection in goldfish, Neurosci. Abstr. 8:668.Google Scholar
  91. 91.
    Meyer, R. L., 1982, Tetrodotoxin inhibits the formation of refined retinotopography in goldfish, Dev. Brain Res. 6:293.CrossRefGoogle Scholar
  92. 92.
    Schmidt, J. T., 1979, Movement of optic terminals in goldfish tectum after local pre or postsynaptic blockade of transmission, Neurosci. Abstr. 5:635.Google Scholar
  93. 93.
    Freeman, J. A., 1977, Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapses, Nature (London) 269:218.CrossRefGoogle Scholar
  94. 94.
    Schmidt, J. T., 1982, The formation of retinotectal projections, Trends in Neuro Sci. 4:111.CrossRefGoogle Scholar
  95. 95.
    Yoon, M. G., 1975, Effects of post-operative visual environments on reorganization of retinotectal projection in goldfish, J. Physiol. (London) 246:673.Google Scholar
  96. 96.
    Meyer, R. L., and Scott, M. Y., 1977, Failure of continuous light to inhibit compression of retinotectal projection in goldfish, Brain Res. 128:153.PubMedCrossRefGoogle Scholar
  97. 97.
    Meyer, R. L., 1982, Tetrodotoxin blocks the formation of ocular dominance columns in goldfish, Science 218:589.PubMedCrossRefGoogle Scholar
  98. 98.
    Boss, V., and Schmidt, J. T., 1982, Tests for a role of activity in the formation of ocular dominance patches, Neurosci. Abstr. 8:668.Google Scholar
  99. 99.
    Stryker, M. P., and Harris, W. A., Impulse activity is necessary for the segregation of ocular dominance columns in the cat’s visual cortex, submitted for publication.Google Scholar
  100. 100.
    Innocenti, C. M., Fiore, L., and Cominiti, R., 1977, Exuberant projections into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4:231.CrossRefGoogle Scholar
  101. 101.
    Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B 287:377.CrossRefGoogle Scholar
  102. 102.
    Rakic, P., 1979, Genesis of visual connections in the rhesus monkey, in: Developmental Neurobiology of Vision (R. D. Freeman, ed.), pp. 249–279, Plenum Press, New York.Google Scholar
  103. 103.
    Land, P. W., and Lund, K. R., 1979, Development of the rats uncrossed retinotectal pathway and its relation to plastic studies, Science, 205:698PubMedCrossRefGoogle Scholar
  104. 104.
    McLoon, S. C., 1982, Alterations in precision of the crossed retinotectal projection during chick development, Science 215:1418.PubMedCrossRefGoogle Scholar
  105. 105.
    Constantine-Paton, M., and Law, M. I., 1978, Eye-specific termination bands in tecta of three-eyed frogs, Science 202:639.PubMedCrossRefGoogle Scholar
  106. 106.
    Straznicky, G., Tay, D., and Hiscock, J., 1982, Segregation of optic fiber projections into eye-specific bands in dually innervated tecta in Xenopus, Neurosci. Lett. 19:131.CrossRefGoogle Scholar
  107. 107.
    Law, M. I., and Constatine-Paton, M., 1980, Right and left eye bands in frogs with unilateral tectal ablations, Proc. Natl. Acad. Sci. USA 77:2314.PubMedCrossRefGoogle Scholar
  108. 108.
    Meyer, R. L., 1979, Extra optic fibers exclude normal fibers from tectal regions in goldfish, J. Comp. Neurol. 183:883.PubMedCrossRefGoogle Scholar
  109. 109.
    Fawcett, J. W., and Willshaw, D. J., 1982, Compound eyes project stripes on the optic tectum in Xenopus, Nature (London) 296:350.CrossRefGoogle Scholar
  110. 110.
    Ide, C. F., Fraser, S. E., and Meyer, R. L., Eye dominance columns from an isogenic double nasal frog eye, Science 221:293.Google Scholar
  111. 111.
    LeVay, S., and Stryker, M. P., 1979, The development of ocular dominance columns in the cat, Soc. Neurosci. Symp. 4:83.Google Scholar
  112. 112.
    Chung, S.-H., and Cooke, J., 1975, Polarity and structure of ordered nerve connections in the developing amphibian brain, Nature (London) 258:126.CrossRefGoogle Scholar
  113. 113.
    Chung, S.-H., and Cooke, J., 1978, Observations on the formation of the brain and of nerve connections following embryonic manipulation of the amphibian neural tube, Proc.R. Soc. Lond. B. 201:335.PubMedCrossRefGoogle Scholar
  114. 114.
    Leber, S. M., and Model, P. G., 1982, Normal localization of synapses on the amphibian Mauthner cell despite precocious synaptogenesis, Neurosci. Abstr. 8:436.Google Scholar
  115. 115.
    Model, P. G., 1978, Aspects of Mauthner cell differentiation in the axolotl, Ambystoma mexicanum, Am. Zool. 18:253.Google Scholar
  116. 116.
    Model, P. G., and Wurzelmann, S., 1982, Vestibular axons form synapses on abnormally derived Mauthner cells, Dev. Brain Res. 3:123.CrossRefGoogle Scholar
  117. 117.
    Landmesser, L., 1981, Pathway selection by embryonic neurons, in: Studies in Developmental Neurobiology (W. M. Cowan, ed.), pp. 53–73, Oxford University Press, London.Google Scholar
  118. 118.
    Oppenheim, R. W., 1981, Neuronal cell death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in: Studies in Developmental Neurobiology (W. M. Cowan, ed.), pp. 74–133, Oxford University Press, London.Google Scholar
  119. 119.
    Lamb, A. H., 1979, Evidence that some developing limb motoneurons die for reasons other than peripheral competition, Dev. Biol. 71:8.PubMedCrossRefGoogle Scholar
  120. 120.
    Weiss, P., 1922, Die funktion transplantierter amphibien extremitäten: Aufstellung einer resonanz theorie der motorischen nerventätigkeit auf grund abgestimmter endorgane, Arch. Mikrosk. Anat. Entwicklungsmech. 102:635.Google Scholar
  121. 121.
    Weiss, P., 1928, Erregungsspezifität und erregungsresonanz: Grundzge einer theorie der motorischen nerventätigkeit auf grund spezifischer zuordnung (“Abstimmung”) zwischen zentraler und peripherer erregung (Nach experimentellen Ergabnissen), Ergeb. Biol. 3:1.CrossRefGoogle Scholar
  122. 122.
    Weiss, P., 1936, Selectivity controlling the central-peripheral relations in the nervous system, Biol. Rev. 11:494.CrossRefGoogle Scholar
  123. 123.
    Miner, N., 1956, Integumental specification of sensory fibers in the development of cutaneous local sign, J. Comp. Neurol. 105:161.PubMedCrossRefGoogle Scholar
  124. 124.
    Jacobson, M., and Baker, R. E., 1968, Development of neuronal connections with skin grafts in the frog. Science 160:543.PubMedCrossRefGoogle Scholar
  125. 125.
    Grimm, L. M., 1971, An evaluation of myotypic respecification in axolotls, J. Exp. Zool. 178:479.PubMedCrossRefGoogle Scholar
  126. 126.
    Heidemann, M. K., 1977, Neurophysiological and behavioral evidence for selective reinnervation in skin-grafted Rana pipiens, Proc. Natl. Acad. Sci. USA 74:5749.PubMedCrossRefGoogle Scholar
  127. 127.
    Hollyday, M., and Grobstein, P., 1981, Of limbs and eyes and neuronal connectivity, in: Studies in Developmental Neurobiology (W. M. Cowan, ed.), pp. 188–217, Oxford University Press, London.Google Scholar
  128. 128.
    Graziadei, P. P. C., Levine, R. R., and Monti Graziadei, G. A., 1978, Regeneration of olfactory axons and synapse formation in the forebrain after bulbectomy in neonatal mouse, Proc. Natl. Acad. Sci. USA 75:5230.PubMedCrossRefGoogle Scholar
  129. 129.
    Gruberg, E. R., and Solish, S. P., 1978, The relationship of a monoamine fiber system to a somatosensory tectal projection in the salamander Ambystoma tigrinum, J. Morphol. 157:137.PubMedCrossRefGoogle Scholar
  130. 130.
    Gruberg, E. R., and Harris, W. A., 1981, The serotonergic somatosensory projection to the tectum of normal and eyeless salamanders, J. Morphol. 170:55.CrossRefGoogle Scholar
  131. 131.
    Harris, W. A., 1982, Differences between embryos and adults in the plasticity of somatosensory afferents to the axolotl tectum, Dev. Brain Res. 7:245.CrossRefGoogle Scholar
  132. 132.
    Keating, M. J., 1974, The role of visual function in the patterning of binocular visual connexions, Br. Med. Bull 30:145.PubMedGoogle Scholar
  133. 133.
    Keating, M. J., and Feldman, J. D., 1975, Visual deprivation and intertectal neuronal connections in Xenopus laevis, itProc. R. Soc. London Ser. B 191:467.CrossRefGoogle Scholar
  134. 134.
    Udin, S. B., and Keating, M. J., 1981, Plasticity in a central nervous pathway in Xenopus: Anatomical changes in the isthmotectal projection after larval eye rotation, J. Comp. Neurol. 203:575.PubMedCrossRefGoogle Scholar
  135. 135.
    Udin, S. B., 1982, Abnormal visual input during development leads to abnormal trajectories of isthmotectal axons in Xenopus frog, Neurosci. Abstr. 8:437.Google Scholar
  136. 136.
    Kollros, J. J., 1953, The development of the optic lobes in the frog. I. The effects of unilateral enucleation in embryonic stages, J. Exp. Zool. 123:153.CrossRefGoogle Scholar
  137. 137.
    Currie, J., and Cowan, W. M., 1974, Some observations on the early development of the optic tectum in the frog (Rana pipiens), with special reference to the effects of early eye removal on mitotic activity in the larval tectum, J. Comp. Neurol. 156:123.PubMedCrossRefGoogle Scholar
  138. 138.
    Kollros, J. J., 1982, Peripheral control of midbrain mitotic activity in the frog, J. Comp. Neurol. 205:171.PubMedCrossRefGoogle Scholar
  139. 139.
    Twitty, V. C., 1932, Influence of the eye on the growth of its associated structures, studied by means of heteroplastic transplantation, J. Exp. Zool. 61:333.CrossRefGoogle Scholar
  140. 140.
    Burr, H. W., 1916, The effects of the removal of the nasal pits in Amblystoma embryos, J. Exp. Zool. 20:27.CrossRefGoogle Scholar
  141. 141.
    Law, M. I., and Constantine-Paton, M., 1981, Morphometric examinaton of competing retinal projections in three-eyed frogs, Neurosci. Abstr. 7:405.Google Scholar
  142. 142.
    Lamb, A. H., 1982, Target dependency of developing motoneurons in Xenopus laevis, itJ. Comp. Neurol. 203:157.CrossRefGoogle Scholar
  143. 143.
    Hollyday, M., and Hamburger, V., 1976, Reduction of the naturally occurring motor neuron loss by enlargement of the periphery, J. Comp. Neurol. 170:311.PubMedCrossRefGoogle Scholar
  144. 144.
    Lamb, A. H., 1979, Ventral horn cell counts in Xenopus with naturally occurring supernumerary hindlimbs, J. Embryol. Exp. Morphol. 49:13.PubMedGoogle Scholar
  145. 145.
    Hollyday, M., 1980, Motoneuron histogenesis and the development of limb innervation, Curr. Top. Dev.Biol. 15:181.PubMedCrossRefGoogle Scholar
  146. 146.
    Lamb, A. H., 1980, Motoneurone counts in Xenopus frogs reared with one bilaterally-innervated hindlimb, Nature (London) 284:347.CrossRefGoogle Scholar
  147. 147.
    Lee, M. T., 1982, Regeneration and functional reconnection of an identified vertebrate central neuron, Ph.D. thesis, University of California, San Diego.Google Scholar
  148. 148.
    Sperry, R. W., 1944, Optic nerve regeneration with return of vision in anurans, J. Neurophys. 7:57.Google Scholar
  149. 149.
    Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7:46.PubMedCrossRefGoogle Scholar
  150. 150.
    Hibbard, E., 1967, Visual recovery following regeneration of the optic nerve through the oculomotor root in Xenopus, Exp. Neurol. 19:350.PubMedCrossRefGoogle Scholar
  151. 151.
    Levine, R. L., 1982, Widespread regeneration of central axons through the central nervous system of the goldfish, Dev. Brain Res. 9:416.CrossRefGoogle Scholar
  152. 152.
    Gaze, R. M., and Fawcett, J. W., 1982, Pathways of Xenopus optic fibers regenerating from normal and compound eyes under various conditions, J. Emb. Exp. Morp. 73:17.Google Scholar
  153. 153.
    Schmidt, J. T., Cicerone, C. M., and Easter, S. S., 1978, Expansion of the half-retinal projection to the tectum in goldfish: An electrophysiological and anatomical study, J. Comp. Neurol. 177:257.CrossRefGoogle Scholar
  154. 154.
    Gaze, R. M., and Sharma, S. C., 1970, Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibers, Exp. Brain Res. 10:171.PubMedCrossRefGoogle Scholar
  155. 155.
    Schmidt, J. T., 1978, Retinal fibers alter tectal positional markers during the expansion of the half retinal projection in goldfish, J. Comp. Neurol. 177:279.PubMedCrossRefGoogle Scholar
  156. 156.
    Sharma, S. C., and Romeskie, 1977, Immediate “compression” of the goldfish retinal projection to a tectum devoid of degenerating debris, Brain Res. 134:1.CrossRefGoogle Scholar
  157. 157.
    Yoon, M. G., 1975, Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish, J. Physiol. (London) 252:137.Google Scholar
  158. 158.
    Yoon, M. G., 1980, Retention of topographic addresses by reciprocally translocated tectal reimplants in adult goldfish, J. Physiol. (London) 308:197.Google Scholar
  159. 159.
    Yoon, M. G., 1977, Induction of compression in the re-established visual projections onto a rotated tectal reimplant that retains its original topographic polarity within the halved optic tectum of adult goldfish, J. Physiol (London) 264:379.Google Scholar
  160. 160.
    Yoon, M. G., 1979, Reciprocal transplantations between the optic tectum and the cerebellum in adult goldfish, J. Physiol. (London) 288:211.Google Scholar
  161. 161.
    Levine, R. L., 1979, Involvement of pigment epithelium in the genesis of locus specificities during retinal regeneration in the newt, Brain Res. 162:154.PubMedCrossRefGoogle Scholar
  162. 162.
    Letinsky, M. S., Fischbeck, K. H., and McMahan, U. J., 1976, Precision of reinnervation of original postsynaptic sites in frog muscle after nerve crush, J. Neurocytol. 5:691.PubMedCrossRefGoogle Scholar
  163. 163.
    Frank, E., Jansen, J. K. S., Lømo, T., and Westgaard, R., 1975, The interaction between foreign and original motor nerves innervating the soleus muscle of rats, J. Physiol. (London) 247:725.Google Scholar
  164. 164.
    Jansen, J. K. S., Lømo, T., Nicolaysen, K., and Westgaard, R. H., 1973, Hyperinnervation of skeletal muscle fibers: Dependence on muscle activity, Science 181:559.PubMedCrossRefGoogle Scholar
  165. 165.
    Mark, R. F., Marotte, L. R., and Mart, P. E., 1972, The mechanism of selective reinnervation of fish eye muscles. IV. Identification of repressed synapses, Brain Res. 46:149.PubMedCrossRefGoogle Scholar
  166. 166.
    Yip, J. W., and Dennis, M. J., 1976, Suppression of transmission at foreign synapses in adult newt muscle involves reduction in quantal content, Nature (London) 260:350.CrossRefGoogle Scholar
  167. 167.
    Scott, S. A., 1977, Maintained function of foreign and appropriate junctions on reinnervated goldfish extraocular muscles, J. Physiol. (London) 168:87.Google Scholar
  168. 168.
    Dennis, M. J., and Yip, J. W., 1978, Formation and elimination of foreign synapses on adult salamander muscle, J. Physiol. (London) 274:299.Google Scholar
  169. 169.
    Mellinger, M. W., 1975, Reconstruction of the cerebral hemispheres in Ambystoma mexicanum following bilateral ablation and ablation/transplantation, Anat. Rec. 75:424.Google Scholar
  170. 170.
    Hershkowitz, M., Segal, M., and Samuel, D., 1972, The acquisition of dark avoidance by transplantation of the forebrain of trained newts (Pleurodeles waltl), Brain Res. 48:366.PubMedCrossRefGoogle Scholar
  171. 171.
    Kirsche, K., and Kirsche, W., 1968, Ueber homotransplantation eines endhirndrittels von Ambystoma mexicanum, Z. Mikrosk. Anat. Forsch. 79:223.PubMedGoogle Scholar
  172. 172.
    Pietsch, P., and Schneider, C. W., 1969, Brain transplantation in salamanders: An approach to memory transfer, Brain Res. 14: 707.PubMedCrossRefGoogle Scholar
  173. 173.
    Pietsch, P., 1981, Shufflebrain, Houghton Mifflin, Boston.Google Scholar
  174. 174.
    Harrison, R. G., 1934, Heteroplastic grafting in embryology, Harvey Lect. 29:116.Google Scholar
  175. 175.
    Harris, W. A., 1979, Amphibian chimeras and the nervous system, Soc. Neurosci. Symp. 4:228.Google Scholar
  176. 176.
    Constantine-Paton, M., 1981, Induced ocular dominance zones in tectal cortex, in: The Organization of the Cerebral Cortex (F. O. Schmitt, F. Worden, and S. Dennis, eds.), pp. 47–67, MIT Press, Cambridge, Mass.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William A. Harris
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations