Some Consequences of Grafting Autonomic Ganglia to Brain Surfaces

  • Jeffrey M. Rosenstein
  • Milton W. Brightman


Neural transplantation has been concerned with both the survival potential of grafts and their incorporation or connections within the host brain substance. Recent investigations have shown that grafts can produce a relatively normal cellular pattern in the cerebellum1 and can make functional connections in the rat visual system,2, 3 hippocampus,4 basal ganglia,5 or hypothalamic system.6 A common thread throughout such experiments is that the neural tissues that survived and differentiated within the host brain were exclusively from fetal donors. Often, homologous fetal tissue was used as grafts that might ameliorate deficiencies in the host. For example, Gash et al.6 implanted fetal hypothalamus in the vasopressin-deficient Brattleboro rat, and Björklund and Stenevi4 and Perlow, Wyatt, and associates5 inserted fetal substantia nigra grafts to supplant a damaged dopamine system. It is well known that the “younger” the CNS neural tissue graft, the better its chances of survival and rate of growth. Recently, cultured fetal CNS tissue has been utilized successfully as donor tissue.7 In sharp contrast, grafts of the peripheral nervous system (PNS) must come from a more mature source in order to survive upon the surface of the CNS.8, 9


Schwann Cell Granule Cell Olfactory Bulb Superior Cervical Ganglion Brain Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Das, G. D., and Altman, J., 1972, Studies on the transplantation of developing neural tissue in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats, Brain Res. 38:233.PubMedCrossRefGoogle Scholar
  2. 2.
    Jaeger, C. B., and Lund, R. D., 1980, Transplantation of embryonic occipital cortex to the tectal region of newborn rats: A light microscopic study of organization and connectivity of the transplants, J. Comp. Neurol. 194:571.PubMedCrossRefGoogle Scholar
  3. 3.
    Lund, R. D., and Harvey, A., 1981, Transplantation of tectal tissue in rats. I. Organization of transplants and pattern distribution of host afferents within them, J. Comp. Neurol. 201:191.PubMedCrossRefGoogle Scholar
  4. 4.
    Björklund, A., and Stenevi, U., 1979, Reconstruction of the nigrostriatal dopamine pathway by intercerebral implants, Brain Res. 177:555.PubMedCrossRefGoogle Scholar
  5. 5.
    Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, Å., Olson, L., and Wyatt, R., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204:643.PubMedCrossRefGoogle Scholar
  6. 6.
    Gash, D., Sladek, C. D., and Sladek, J. R., Jr., 1980, A model system for analysing functional development of transplanted peptidergic neurons, Peptides 1(Suppl. 1):125.CrossRefGoogle Scholar
  7. 7.
    McLoon, L. K., Lund. R. D., and McLoon, S. C., 1982, Transplantation of reaggregates of embryonic neural retinae to neonatal rat brain: Differentiation and formation of connections, J. Comp. Neurol. 205:179.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenstein, J. M., and Brightman, M. W., 1978, Intact cerebral ventricle as a site for tissue transplantation, Nature (London) 275:83.CrossRefGoogle Scholar
  9. 9.
    Rosenstein, J. M., and Brightman, M. W., 1979, Regeneration and myelination in autonomic ganglia transplanted to intact brain surfaces, J. Neurocytol. 8:359.PubMedCrossRefGoogle Scholar
  10. 10.
    Stenevi, U., Björklund, A., and Svendgaard, N.-A., 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival, Brain Res. 114:1.PubMedCrossRefGoogle Scholar
  11. 11.
    Hökfelt, T., Johannson, O., Ljungdahl, A., Lundberg, J. M., and Schultzberg, M., 1980, Peptidergic neurons, Nature (London) 283:515.CrossRefGoogle Scholar
  12. 12.
    Kessler, J. A., and Black, I. B., 1982, Regulation of substance P in adult sympathetic ganglia, Brain Res. 234:182.PubMedCrossRefGoogle Scholar
  13. 13.
    Madison, R., Crutcher, K. A., and Davis, J. N., 1981, Sympathohippocampal neurons are inside the blood-brain barrier, Brain Res. 213:183.PubMedCrossRefGoogle Scholar
  14. 14.
    Hendry, I. A., 1975, The response of adrenergic neurons to axotomy and nerve growth factor, Brain Res. 94:87.PubMedCrossRefGoogle Scholar
  15. 15.
    Glees, P., 1955, Studies on cortical regeneration with special reference to central implants, in: Regeneration in the Central Nervous System (W. Windle, ed.), pp. 94–111, Academic Press, New York.Google Scholar
  16. 16.
    Rosenstein, J. M., and Brightman, M. W., 1980, Arrest and migration of cerebellar neurons towards grafts of autonomic ganglion, Peptides 1:221.CrossRefGoogle Scholar
  17. 17.
    Rosenstein, J. M., and Brightman, M. W., 1981, Anomalous migration of central nervous tissue to transplanted autonomic ganglia, J. Neurocytol. 10:387.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramón y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System (R. M. May, ed., transl.), Vol. 1, Oxford University Press, London.Google Scholar
  19. 19.
    Martinovic, P. N., 1930. Migration and survival of the nerve cells cultivated in the cerebrospinal fluid of the embryo and the young animal, Arch. Exp. Zellforsch. Besonders Gewebezuech. 10:145.Google Scholar
  20. 20.
    Rappoport, S. I., 1976, Blood-Brain Barrier in Physiology and Medicine, Raven Press, New York.Google Scholar
  21. 21.
    Rees, R. P., and Bunge, R., 1974, Morphological and cytochemical study of synapses formed in culture between isolated superior cervical ganglion neurons, J. Comp. Neurol. 157:1.PubMedCrossRefGoogle Scholar
  22. 22.
    Black, I. B., and Mytilineou, C., 1976, Trans-synaptic regulation of the development of end organ innervation by sympathetic neurons, Brain Res. 101:503.PubMedCrossRefGoogle Scholar
  23. 23.
    Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter function, Annu. Rev. Neurosci. 1:1.PubMedCrossRefGoogle Scholar
  24. 24.
    Iacovitti, L., Joh, T. H., Park, D. H., and Bunge, R. P., 1981, Dual expression of neurotransmitter synthesis in cultured autonomic neurons, J. Neurosci. 1:685.PubMedGoogle Scholar
  25. 25.
    Potter, D. D., Landis, S. C., and Furshpan, E. J., 1980, Dual function during development of rat sympathetic neurons in culture, J. Exp. Biol. 89:57.PubMedGoogle Scholar
  26. 26.
    Richardson, K. C., 1966, Electron microscopic identification of autonomic nerve endings, Nature (London) 210:765.CrossRefGoogle Scholar
  27. 27.
    Tranzer, J. P., and Richards, J. G., 1976, Ultrastructural cytochemistry of biogenic amines in nervous tissue: Methodologic improvements, J. Histochem. Cytochem. 24:1178.PubMedCrossRefGoogle Scholar
  28. 28.
    Landis, S. C., 1977, Growth cones of cultured sympathetic neurons contain adrenergic vesicles, J. Cell Biol. 78:8.CrossRefGoogle Scholar
  29. 29.
    Yamauchi, A., Lever, J. D., and Kemp, K. W., 1973, Catecholamine loading and depletion in the rat superior cervical ganglion, J. Anat. 114:272.Google Scholar
  30. 30.
    Molliver, M. E., and Kristt, D. A., 1975, The fine structural demonstration of monoaminergic synapses in immature rat neocortex, Neurosci. Lett. 1:305.PubMedCrossRefGoogle Scholar
  31. 31.
    Jacobson, M., 1978, Developmental Neurobiology, 2nd ed., Plenum Press, New York.Google Scholar
  32. 32.
    Liu, H. M., Balkovic, E. S., Sheff, M. F., and Zacks, S. I., 1979, Production in vitro of a neurotropic substance from proliferative neurolemma-like cells, Exp. Neurol. 64:271.PubMedCrossRefGoogle Scholar
  33. 33.
    Weiss, P., and Taylor, A. C., 1944, Further experimental evidence against “neurotropism” in nerve regeneration, J. Exp. Zool. 95:233.CrossRefGoogle Scholar
  34. 34.
    Yamamoto, M., Chan-Palay, V., Steinbusch, H., and Palay, S. L., 1980, Hyperinnervation of arrested granule cells produced by transplantation of monoamine containing neurons into the fourth ventricle of rat, Anat. Embryol. 159:1.PubMedCrossRefGoogle Scholar
  35. 35.
    Altman, J., 1969, Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats, J. Comp. Neurol. 136:269.PubMedCrossRefGoogle Scholar
  36. 36.
    Altman, J., 1966, Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions, J. Comp. Neurol. 128:431.CrossRefGoogle Scholar
  37. 37.
    Hinds, J. W., 1968, Autoradiographic study of histogenesis in the mouse olfactory bulb, J. Comp. Neurol. 134:305.PubMedCrossRefGoogle Scholar
  38. 38.
    Eng, L. F., 1980, The glial fibrillary acidic (GFA) protein, in: Proteins of the Nervous System (R. Bradshaw and D. Schneider, eds.), Raven Press, New York.Google Scholar
  39. 39.
    Jessen, K. R., and Mirsky, R., 1980, Glial cells in the enteric nervous system contain glial fibrillary acidic proteins, Nature (London) 286:736.CrossRefGoogle Scholar
  40. 40.
    Trapp, B. D., McIntyre, L. J., Quarles, R. H., Stemberger, N. H., and Webster, H. de F., 1979, Immunocytochemical localization of rat peripheral nervous system myelin proteins: P2 protein is not a component of all peripheral nervous system myelin sheaths, Proc. Natl. Acad. Sci. USA 76:3552.PubMedCrossRefGoogle Scholar
  41. 41.
    Heard, J. K., and Gilmore, S. A., 1980, Intramedullar Schwann cell development following x-irradiation of mid-thoracic and lumbosacral spinal cord levels in immature rats, Anat. Rec. 197:85.PubMedCrossRefGoogle Scholar
  42. 42.
    Weinberg, E. L., and Raine, C. S., 1980, Reinnervation of peripheral nerve segments implanted into the rat central nervous system, Brain Res. 198:1.PubMedCrossRefGoogle Scholar
  43. 43.
    Raine, C. S., Traugott, V., and Stone, S. H., 1978, Glial bridges and Schwann cell migration during chronic demyelination in the CNS, J. Neurocytol. 7:541.PubMedCrossRefGoogle Scholar
  44. 44.
    Jacobs, J. M., 1977, Penetration of systematically injected horseradish peroxidase into ganglia and nerves of the autonomic nervous system, J. Neurocytol. 6:607.PubMedCrossRefGoogle Scholar
  45. 45.
    Brightman, M. W., Hori, M., Rappoport, S., Reese, T. S., and Westergaard, E., 1973, Osmotic opening of tight junctions in cerebral endothelium, J. Comp. Neurol. 152:317.PubMedCrossRefGoogle Scholar
  46. 46.
    Brightman, M. W., 1977, Morphology of blood-brain interfaces, in: The Ocular and Cerebrospinal Fluids (L. Z. Bito, H. Davson, and J. D. Fenstermacher, eds.), Exp. Eye Res. 25:1.PubMedCrossRefGoogle Scholar
  47. 47.
    Groothius, D. R., Fischer, J. M., Lapin, G., Bigner, D. D., and Vick, N. A., 1982, Permeability of different experimental brain tumor models to horseradish peroxidase, J. Neuropathol. Exp. Neurol. 41:164.CrossRefGoogle Scholar
  48. 48.
    Brightman, M. W., and Reese, T. S., 1969, Junctions between intimately apposed cell membranes in the vertebrate brain, J. Cell Biol. 40:648.PubMedCrossRefGoogle Scholar
  49. 49.
    Knyihar-Csillik, E., Csillik, B., and Rakic, P., 1982, Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey, J. Comp. Neurol. 210:357.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jeffrey M. Rosenstein
    • 1
  • Milton W. Brightman
    • 2
  1. 1.Department of AnatomyGeorge Washington University Medical CenterUSA
  2. 2.Laboratory of Neuropathology and Neuroanatomical SciencesNational Institutes of HealthBethesdaUSA

Personalised recommendations