Skip to main content

Transplantation Strategies in Spinal Cord Regeneration

  • Chapter

Abstract

Transplantation models in the brain have proven successful under conditions in which transplants serve as a “bridge” for the regeneration of axons across a site of injury, or as “release” or “driving” units to replace missing inputs to a particular target area.1–8 Similar models have been applied to the mammalian spinal cord including: (1) intraspinal transplants to form a bridge for the regeneration of spinal cord axons, (2) extraspinal transplants with only the end or ends of the transplants inserted into the cord to bypass the region of injury, and (3) intraspinal neural implants to replace missing supraspinal inputs. These models demonstrate that neurons of the spinal cord possess the ability to regenerate axons several millimeters into both intrinsic and extrinsic transplants; however, the growth of these axons into the tissue of the host spinal cord has been limited. By contrast, embryonic CNS neurons transplanted into the adult spinal cord, possess the ability to grow axons that penetrate several millimeters into spinal cord tissue. This review provides an overview of the attempts to promote regeneration of spinal cord connections by using various transplantation paradigms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björklund, A., and Stenevi, U., 1979, Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants, Brain Res. 17:555.

    Article  Google Scholar 

  2. Björklund, A., Stenevi, U., Dunnett, S. B., and Iversen, S. D., 1981, Functional reactivation of the deafferented neostriatum by nigral transplants, Nature (London) 289:497.

    Article  Google Scholar 

  3. Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, Å., Olson, L., and Wyatt, R. J., 1979, Brain grafts reduce motor abnormalities produced by destruction of neostriatal dopamine system, Science 204:643.

    Article  PubMed  CAS  Google Scholar 

  4. Freed, W. J., Perlow, M. J., Karoum, F., Seiger, Å., Olson, L., Hoffer, B. J., and Wyatt, R. J., 1980, Restoration of dopaminergic functions by grafting of fetal rat substantia nigra to the caudate nucleus: Long-term behavioral, biochemical, and histochemical studies, Ann. Neurol. 8:510.

    Article  PubMed  CAS  Google Scholar 

  5. Gash, D., Sladek, J. R., Jr., and Sladek, S. D., 1980, Functional development of grafted vasopressin neuron, Science 210:1367.

    Article  PubMed  CAS  Google Scholar 

  6. Kromer, L. F., Björklund, A., and Stenevi, U., 1980, Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants as bridges, Brain Res. 210:173.

    Article  Google Scholar 

  7. Dunnett, S. B., Low, W. C., Iversen, S. D., Stenevi, U., and Björklund, A., 1982, Septal transplants restore maze learning in rats with fornix-fimbria lesion, Brain Res. 251:335.

    Article  PubMed  CAS  Google Scholar 

  8. Krieger, D. T., Perlow, M. J., Gibson, M. J., Davies, T. F., Zimmerman, E. A., Ferin, M., and Charlton, H. M., 1982, Brain graft reverse hypogonadism of gonadotropin releasing hormone deficiency, Nature (London) 298:468.

    Article  CAS  Google Scholar 

  9. Tello, F., 1911, La influencia del neurotropismo en la regeneracio de los centros nervioses, Trab., Lab. Invest. Biol. Madred 9:123.

    Google Scholar 

  10. Ramón y Cajal, S., 1928, Degeneration and regeneration of the nervous system (R. M. May, ed., transl.), Hafner, New York.

    Google Scholar 

  11. Puchala, E., and Windle, W. F., 1977, The possibility of structural and functional restoration after spinal cord injury: A review, Exp. Neurol. 55:1.

    Article  PubMed  CAS  Google Scholar 

  12. Guth, L., Brewer, C. R., Collins, W. F., Goldberger, M. E., and Perl, E. R., 1980, Criteria for evaluating spinal cord regeneration experiment, Exp. Neurol. 69:1.

    Article  PubMed  CAS  Google Scholar 

  13. Sugar, O., and Gerard, R. W., 1940, Spinal cord regeneration in the rat, J. Neurophysiol. 3:1

    Google Scholar 

  14. Barnard, J. W., and Carpenter, W., 1950, Lack of regeneration in spinal cord of rat, J. Neurophysiol. 13:223.

    PubMed  CAS  Google Scholar 

  15. Feigin, I., Geller, E. H., and Wolf, A., 1951, Absence of regeneration in the spinal cord of the young rat, J. Neuropathol. Exp. Neurol. 10:42-.

    Article  Google Scholar 

  16. Brown, J. O., and McCouch, G. P., 1947, Abortive regeneration of the transected spinal cord, J. Comp. Neurol. 87:131.

    Article  PubMed  CAS  Google Scholar 

  17. Kao, C. C., Shimizu, Y., Perkins, L. C., and Freeman, L. W., 1970, Experimental use of cultured cerebellar cortical tissue to inhibit the collagenous scar following spinal cord transection, J. Neurosurg. 3:127.

    Google Scholar 

  18. Kao, C. C., 1974, Comparison of wound healing process in transected spinal cords grafted with autologous brain tissue, sciatic nerve, and nodose ganglia, Exp. Neurol. 44:424.

    Article  PubMed  CAS  Google Scholar 

  19. Kao, C. C., Chang, L. W., and Bloodworth, J. M. B., Jr., 1977, Successful axonal regeneration to bridge the gap of transected mammalian spinal cords: An electron microscopic study of the results of delayed microsurgical nerve grafting, Exp. Neurol. 54:591–615.

    Article  PubMed  CAS  Google Scholar 

  20. Kao, C. C., Chang, L. W., and Bloodworth, J. M. B., Jr., 1977, The mechanism of spinal cord cavitation following spinal cord transection. Part 3. Delayed grafting with and without retransection, J. Neurosurg. 46:757.

    Article  PubMed  CAS  Google Scholar 

  21. Richardson, P. M., McGuiness, U. M., and Aguayo, A. J., 1980, Axons from CNS neurons regenerate into PNS grafts, Nature (London) 284:264.

    Article  CAS  Google Scholar 

  22. Richardson, P. M., McGuiness, U. M., and Aguayo, A. J., 1982, Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracing methods, Brain Res. 237:147.

    Article  PubMed  CAS  Google Scholar 

  23. Blakemore, W. F., 1977, Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve, Nature (London) 266:68.

    Article  CAS  Google Scholar 

  24. Duncan, I. D., Aguayo, A. J., Bunge, R. P., and Wood, P. M., 1981, Transplantation of rat Schwann cells grown in tissue culture into mouse spinal cord. J. Neurol. Sci. 49:241.

    Article  PubMed  CAS  Google Scholar 

  25. Wrathal, J. R., Rigamonte, D. D., Braford, M. R., and Kao, C. C., 1982, Reconstruction of the contused cap spinal cord by the delayed nerve graft technique and cultured peripheral nonneuronal cells, Acta Neuropathol. 57:59.

    Article  Google Scholar 

  26. Björklund, A., Katzman, R., Stenevi, U., and West, K. A., 1971, Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurons in the rat spinal cord, Brain Res. 31:21.

    Article  PubMed  Google Scholar 

  27. Aihara, H., 1970, Autotransplantation of cultured cerebellar cortex for spinal cord reconstruction, Brain Nerve 22:769 (in Japanese).

    PubMed  CAS  Google Scholar 

  28. Bregman, B. S., and Reier, P. J., 1982, Transplantation of fetal spinal cord tissue to injured spinal cord in neonatal and adult rats, Soc. Neurosci. Abstr. 8:870.

    Google Scholar 

  29. Nornes, H., Björklund, A., and Stenevi, U., 1983, Reinnervation of the denervated adult spinal cord of rats by intraspinal transplants of embryonic brainstem neurons, Cell Tissue Res. 230:15.

    Article  PubMed  CAS  Google Scholar 

  30. Nornes, H., Björklund, A., and Stenevi, U., 1981, Embryonic CNS tissue implanted into adult spinal cords, Soc. Neurosci. Abstr. 7:678.

    Google Scholar 

  31. Campbell, J. B., Andrew, C., Bassett, L., Husby, J., and Noback, C. R., 1958, Axonal regeneration in the transected adult feline spinal cord. Surg. Forum 8:528.

    Google Scholar 

  32. Bassett, C. A. L., Campbell, J. B., and Husby, J., 1959, Peripheral nerve and spinal cord regenerative factors leading to success of a tubulation technique employing Millipore, Exp. Neurol. 1:386.

    Article  PubMed  CAS  Google Scholar 

  33. de la Torre, J. C., 1982, Catecholamine fibre regeneration across a collagen bioimplant after spinal cord transection, Brain Res. Bull. 9:545.

    Article  PubMed  Google Scholar 

  34. Turbes, C. C., and Freeman, L. W., 1958, Peripheral nerve-spinal cord anastomosis for experimental cord transection, Neurology 8:857.

    PubMed  CAS  Google Scholar 

  35. Perkins, L., Babbini, A., and Freeman, L. W., 1964, Distal-proximal nerve implants in spinal cord transection, Neurology 14:949.

    PubMed  CAS  Google Scholar 

  36. Galabov, G., 1966, Regeneration of sectioned spinal cord by implantation of a peripheral nerve, Comp. Neurol. Acad. Bulg. Sci. 19:449.

    CAS  Google Scholar 

  37. David, S., and Aguayo, A. J., 1981, Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats, Science 214:931.

    Article  PubMed  CAS  Google Scholar 

  38. Andén, N.-E., Jukes, M. G. M., and Lundberg, A., 1966, The effect of DOPA on the spinal cord. 2. A pharmacological analysis, Acta Physiol. Scand. 67:387.

    Article  PubMed  Google Scholar 

  39. Jankowska, E., Jukes, M. G. M., and Lundberg, A., 1967, The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurons transmitting effects from flexor reflex afferents, Acta Physiol. Scand. 70:389.

    Article  PubMed  CAS  Google Scholar 

  40. Grillner, S., 1973, Locomotion in the spinal cat, in: Control of Posture and Locomotion (R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford, eds), pp. 515–536, Plenum Press, New York.

    Google Scholar 

  41. Lundberg, A., 1982, Inhibitory control from brain stem of transmission from primary afferents to motorneurons, primary afferent terminals and ascending pathways, in: Brain Stem Control of Spinal Mechanisms (B. Sjölund and A. Björklund, eds.), Elsevier Biomedical Press, Amsterdam, New York, Oxford.

    Google Scholar 

  42. Nygren, L. G., Olson, L., and Seiger, Å., 1977, Monoaminergic reinnervation of transected spinal cord by homologous fetal brain grafts, Brain Res. 129:227.

    Article  PubMed  CAS  Google Scholar 

  43. Segal, M., Stenevi, U., and Björklund, A., 1981, Reformation in adult rats of functional septo-hippocampal connection by septal neurons regenerating across an embryonic hippocampal connection by septal neurons regenerating across an embryonic hippocampal bridge, Neurosci. Lett. 27:7.

    Article  PubMed  CAS  Google Scholar 

  44. Stensaas, L. J., Burgess, P. R., and Horch, K. W., 1979, Regenerating dorsal root axons blocked by spinal cord astrocytes, Soc. Neurosci. Abstr. 5:684.

    Google Scholar 

  45. Nathaniel, E. J. H., and Nathaniel, D. R., 1973, Regeneration of dorsal root fibers into the adult rat spinal cord, Exp. Neurol. 40:333.

    Article  PubMed  CAS  Google Scholar 

  46. Perkins, C. S., Carlstedt, T., Mizuno, K., and Aguayo, A. J., 1980, Failure of regenerating dorsal root axons to regrow into the spinal cord. Can. J. Neurol. Sci. 7:323.

    Google Scholar 

  47. Rovainen, C. M., 1976, Regeneration of Müller and Mauthner axon after spinal transection in the larval lamprey, J. Comp. Neurol. 168:545.

    Article  PubMed  CAS  Google Scholar 

  48. Selzer, M. E., 1978, Mechanism of functional recovery and regeneration after spinal cord transection in larval sea lamprey, J. Physiol. (London) 277:395.

    CAS  Google Scholar 

  49. Shik, M. L., Severin, F. V., and Orlovsky, G. N., 1966, Control of walking and running by means of electrical stimulation of the midbrain, Biophysics 11:756.

    Google Scholar 

  50. Stein, P. C., 1978, Motor systems with specific reference to control of locomotion, Annu. Rev. Neurosci. 1:61.

    Article  PubMed  CAS  Google Scholar 

  51. Björklund, A., Segal, M., and Stenevi, U., 1979, Functional reinnervation of rat hippocampus by locus coeruleus implants, Brain Res. 170:409.

    Article  PubMed  Google Scholar 

  52. Low, W. C., Lewis, P. R., Bunch, S. B., Dunnett, S. B., Thomas, S. R., Iversen, S. D., Björklund, A., and Stenevi, U., 1982, Functional recovery following neural transplants of embryonic septal nuclei into adult rats with septohippocampal lesions: The recovery of function, Nature (London) 300:260.

    Article  CAS  Google Scholar 

  53. Budakova, N. N., 1973, Stepping movements in the spinal cat due to DOPA administration, Fiz. Zh. SSSR im. I.M. Sechenova 59:1190.

    CAS  Google Scholar 

  54. Forssberg, H., and Grillner, S., 1973, The locomotion of the acute spinal cat injected with clonidine i. v., Brain Res. 50:184.

    Article  PubMed  CAS  Google Scholar 

  55. Viala, D., and Buser, P., 1969, The efTects of DOPA and 5-HTP on rhythmic efferent discharges in hindlimb nerves in the rabbit, Brain Res. 12:437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Nornes, H., Björklund, A., Stenevi, U. (1984). Transplantation Strategies in Spinal Cord Regeneration. In: Sladek, J.R., Gash, D.M. (eds) Neural Transplants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4685-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4685-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4687-6

  • Online ISBN: 978-1-4684-4685-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics