Use of CNS Implants to Promote Regeneration of Central Axons across Denervating Lesions in the Adult Rat Brain

  • Ulf Stenevi
  • Anders Björklund
  • Lawrence F. Kromer


Following lesions that cause substantial tissue damage, such as spinal cord transection or large hemorrhagic necroses in the brain, mammals exhibit very little evidence of regeneration of the severed axons across the necrosis (see Refs. 1–4 for reviews). This holds true also for those nonmyelinated or finely myelinated systems, such as the monoaminergic and cholinergic neurons, that have been shown to possess a very pronounced regenerative capacity (see Ref. 5 for review). Early this century, Tello6, 7 and Ramón y Cajal8 described this regenerative failure as due to a lack of neurotropic mechanisms and growth pathways in the adult mammalian CNS. Based on this notion, these authors were the first to attempt to promote regeneration of lesioned central axons by using implants of peripheral nerve.


Dentate Gyrus Cholinergic Neuron Transect Spinal Cord Central Axon Septal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Windle, W. F., Clemente, C. D., and Chambers, W. W., 1952, Inhibition of formation of a glial barrier as a means of permitting a peripheral nerve to grow into the brain, J. Comp. Neurol. 96:359.PubMedCrossRefGoogle Scholar
  2. 2.
    Björklund, A., and Stenevi, U., 1971, Growth of central catecholamine neurones into smooth muscle grafts in the rat mesencephalon, Brain Res. 31:1.PubMedCrossRefGoogle Scholar
  3. 3.
    Clemente, C. D., 1964, Regeneration in the vertebrate central nervous system, Int. Rev. Neurobiol. 6:257.PubMedCrossRefGoogle Scholar
  4. 4.
    Puchala, E., and Windle, W. F., 1977, The possibility of structural and functional restitution after spinal cord injury: A review, Exp. Neurol. 55:1.PubMedCrossRefGoogle Scholar
  5. 5.
    Björklund, A., and Stenevi, U., 1979, Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system, Physiol. Rev. 59:62.PubMedGoogle Scholar
  6. 6.
    Tello, J. F., 1911, La influencia del neurotropismo en la generacion de los centros nervioso, Trab. Lab. Invest. Biol. 9:123.Google Scholar
  7. 7.
    Tello, J. F., 1923, Gegen wärtige Anschaungen über den Neurotropismus, Vortr. Entwicklungsmech. Org. 33:1.Google Scholar
  8. 8.
    Ramón y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System, Oxford University Press, London.Google Scholar
  9. 9.
    Aihara, H., 1970, Autotransplantation of the cultured cerebellar cortex for spinal cord reconstruction, Brain Nerve 22:769.PubMedGoogle Scholar
  10. 10.
    Benfey, M., and Aguayo, A. J., 1982, Extensive elongation of axons from rat brain into peripheral nerve grafts, Nature (London) 296:150.CrossRefGoogle Scholar
  11. 11.
    Brown, J. D., and McCouch, G. P., 1947, Abortive regeneration of the transected spinal cord, J. Comp. Neurol. 87:131.PubMedCrossRefGoogle Scholar
  12. 12.
    Campbell, J. B., Bassett, C. A. L., Thulin, C. A., and Feringa, E. R., 1960, The use of nerve grafts to orient axonal regeneration in transected spinal cord, Anat. Rec. 136:174.Google Scholar
  13. 13.
    David, S., and Aguayo, A. J., 1981, Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats, Science 214:931.PubMedCrossRefGoogle Scholar
  14. 14.
    Feigin, I., Geller, E. H., and Wolf, A., 1951, Absence of regeneration in the spinal cord of the young rat, J. Neuropathol. Exp. Neurol. 10:420.PubMedCrossRefGoogle Scholar
  15. 15.
    Glees, P., 1955, Studies on cortical regeneration with special reference to central implants, in: Regeneration in the Central Nervous System (W. F. Windle, ed.), pp. 94–111, Thomas, Springfield, Ill.Google Scholar
  16. 16.
    Kao, C. C., 1974, Comparison of healing process in transected spinal cords grafted with autogenous brain tissue, sciatic nerve, and nodose ganglion, Exp. Neurol. 44:424.PubMedCrossRefGoogle Scholar
  17. 17.
    Kao, C. C., Chang, L. W., and Bloodworth, J. M. B., Jr., 1977, Axonal regeneration across transected mammalian spinal cords: An electron microscopic study of delayed microsurgical nerve grafting, Exp. Neurol. 54:591.PubMedCrossRefGoogle Scholar
  18. 18.
    Le Gros Clark, W. E., 1942, The problem of neuronal regeneration in the central nervous system. 1. The influence of spinal ganglia and nerve fragments grafted in the brain, J. Anat. 77:20.PubMedGoogle Scholar
  19. 19.
    Richardson, P. M., McGuinness, U. M., and Aguayo, A. J., 1980, Axons from CNS neurones regenerate into PNS grafts, Nature (London) 284:264.CrossRefGoogle Scholar
  20. 20.
    Richardson, P. M., McGuinness, U. M., and Aguayo, A. J., 1982, Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracing methods, Brain Res. 237:147.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugar, O., and Gerard, R. W., 1940, Spinal cord regeneration in the rat, J. Neurophysiol. 3:1.Google Scholar
  22. 22.
    Woolsey, D., Minkler, J., Rezende, N., and Klemme, R., 1944, Human spinal cord transplant, Exp. Med. Surg. 2:93.Google Scholar
  23. 23.
    Emson, P. C., Björklund, A., and Stenevi, U., 1977, Evaluation of the regenerative capacity of central dopaminergic, noradrenergic and cholinergic neurones using iris implants as targets, Brain Res. 135:87.PubMedCrossRefGoogle Scholar
  24. 24.
    Svendgaard, N.-A., Björklund, A., and Stenevi, U., 1976, Regeneration of central cholinergic neurons in the adult rat brain, Brain Res. 102:1.PubMedCrossRefGoogle Scholar
  25. 25.
    Kromer, L. F., Björklund, A., and Stenevi, U., 1978, Development of specific connection between embryonic brain implants and the adult rat brain. 1. Establishment of a hippocamposeptal pathway by implanted hippocampal neurons, Neurosci. Lett. Suppl. 1:S33.Google Scholar
  26. 26.
    Kromer, L. F., Björklund, A., and Stenevi, U., 1981, Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult rat, Brain Res. 210:153.PubMedCrossRefGoogle Scholar
  27. 27.
    Kromer, L. F., Björklund, A., and Stenevi, U., 1981, Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants, as bridges, Brain Res. 210:173.PubMedCrossRefGoogle Scholar
  28. 28.
    Stenevi, U., Björklund, A., and Svendgaard, N.-A., 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival, Brain Res. 114:1.PubMedCrossRefGoogle Scholar
  29. 29.
    Svendgaard, N.-A., Björklund, A., and Stenevi, U., 1975, Regenerative properties of central monoamine neurons, Adv. Anat. Embryol. Cell Biol. 51:1.Google Scholar
  30. 30.
    Kromer, L. F., Björklund, A., and Stenevi, U., 1979, Intracephalic implants: A technique for studying neuronal interactions, Science 204:1117.PubMedCrossRefGoogle Scholar
  31. 31.
    Kromer, L. F., Björklund, A., and Stenevi, U., 1983, Intracephalic embryonic neural implants in the adult rat brain. I. Growth and mature organization of brainstem, cerebellar, and hippocampal implants, J. Comp. Neurol. 218:433.PubMedCrossRefGoogle Scholar
  32. 32.
    Björklund, A., Johansson, B., Stenevi, U., and Svendgaard, N.-A., 1975, Re-establishment of functional connections by regenerating central adrenergic and cholinergic axons, Nature (London) 253:446.CrossRefGoogle Scholar
  33. 33.
    Olson, L., 1969, Intact and regenerating sympathetic norepinephrine axons in the rat sciatic nerve, Histochemie 17:349.PubMedCrossRefGoogle Scholar
  34. 34.
    Speidel, C. C., 1964, In vivo studies of myelinated nerve fibers, Int. Rev. Cytol. 16:173.PubMedCrossRefGoogle Scholar
  35. 35.
    Björklund, A., Kromer, L. F., and Stenevi, U., 1979, Cholinergic reinnervation of the rat hippocampus by septal implants is stimulated by perforant path lesion, Brain Res. 173:57.PubMedCrossRefGoogle Scholar
  36. 36.
    Björklund, A., and Stenevi, U., 1977, Reformation of the severed septohippocampal cholinergic pathway in the adult rat by transplanted septal neurons, Cell Tissue Res. 185:289.PubMedCrossRefGoogle Scholar
  37. 37.
    Kromer, L. F., 1982, Cholinergic axons from delayed septal implants and sympathetic fibers co-exist in the denervated dentate gyrus, Brain Res. Bull. 9:539.PubMedCrossRefGoogle Scholar
  38. 38.
    Segal, M., Stenevi, U., and Björklund, A., 1981, Reformation in adult rats of functional septo-hippocampal connections by septal neurons regenerating across an embryonic hippocampal tissue bridge, Neurosci. Lett. 27:7.PubMedCrossRefGoogle Scholar
  39. 39.
    Daitz, H. M., and Powell, T. P. S., 1954, Studies of the connections of the fornix system, J. Neurol. Neurosurg. Psychiatry 17:75.PubMedCrossRefGoogle Scholar
  40. 40.
    McLardy, T., 1955, Observations on the fornix of the monkey. 1. Cell studies, J. Comp. Neurol. 103:305.PubMedCrossRefGoogle Scholar
  41. 41.
    Kromer, L. F., 1980, Glial scar formation in the brain of adult rats is inhibited by implants of embryonic CNS tissue, Soc. Neurosci. Abstr. 6:688.Google Scholar
  42. 42.
    Björklund, A., and Lindvall, O., 1979, Regeneration of normal terminal innervation patterns by central noradrenergic neurons after 5, 6-dihydroxytryptamine-induced axotomy in the adult rat, Brain Res. 171:271.PubMedCrossRefGoogle Scholar
  43. 43.
    Björklund, A., and Wiklund, L., 1980, Mechanism of regrowth of the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. I. Biochemical correlates, Brain Res. 191:109.CrossRefGoogle Scholar
  44. 44.
    Nobin, A., Baumgarten, A. H. G., Björklund, A., Lachenmayer, L., and Stenevi, U., 1973, Axonal degeneration and regeneration of the bulbospinal indolamine neurons after 5,6-dihydroxytryptamine treatment, Brain Res. 56:1.PubMedCrossRefGoogle Scholar
  45. 45.
    Nygren, L.-G., and Olson, L., 1977, Intracisternal neurotoxins and monoamine neurons innervating the spinal cord: Acute and chronic effects on cell and axon counts and nerve terminal densities, Histochemistry 52:281.PubMedCrossRefGoogle Scholar
  46. 46.
    Wiklund, L., and Björklund, A., 1980, Mechanisms of regrowth in the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. II. Fluorescence histochemical observations, Brain Res. 191:129.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ulf Stenevi
    • 1
  • Anders Björklund
    • 1
  • Lawrence F. Kromer
    • 2
  1. 1.Departments of Histology and OphthalmologyUniversity of LundLundSweden
  2. 2.Department of Anatomy and Neurobiology, College of MedicineUniversity of VermontBurlingtonUSA

Personalised recommendations