Specificity of Termination Fields Formed in the Developing Hippocampus by Fibers from Transplants

  • Carl W. Cotman


One of the major unsolved problems in neurobiology is understanding the mechanisms specifying the development of specific synapses and their plasticity after injury. A variety of mechanisms have been postulated to account for the development and plasticity of specific connections between central neurons, i. e., mechanical or contact guidance, chemotaxis, afferent competition, temporal matching, chemospecificity, etc. Transplantation provides a means for evaluating the potential role of at least some of these mechanisms. It is relatively simple, for example, to vary the position of the afferent source and alter the temporal sequence of events during the development of a specific afferent projection. Experiments varying such parameters have proven instrumental in analyzing the mechanism of synapse formation in nonmammalian species such as the retinotectal field in amphibians.


Dentate Gyrus Entorhinal Cortex Molecular Layer Hippocampal Formation Terminal Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azmitia, E. C., Perlow, M. J., Brennan, M. J., and Lauder, J. M., 1981, Fetal raphe and hippocampal transplants into adult and aged C57BL/6N mice: A preliminary immunocytochemical study, Brain Res. 7:703.Google Scholar
  2. 2.
    Björklund, A., and Stenevi, U., 1977, Reformation of the severed septohippocampal cholinergic pathway in the adult rat by transplanted septal neurons, Cell Tissue Res. 185:289.PubMedCrossRefGoogle Scholar
  3. 3.
    Björklund, A., and Stenevi, U., 1979, Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system, Physiol. Rev. 59:62.PubMedGoogle Scholar
  4. 4.
    Björklund, A., Stenevi, U., and Svendgaard, N. A., 1976, Growth of transplanted monoaminergic neurons into the adult hippocampus along the perforant path, Nature (London) 262:787.CrossRefGoogle Scholar
  5. 5.
    Björklund, A., Wiklund, L., and Descarries, L., 1981, Regeneration and plasticity of central serotoninergic neurons: A review, J. Physiol. (Paris) 77:247.Google Scholar
  6. 6.
    Cotman, C. W., 1979, Specificity of synaptic growth in brain: Remodeling induced by kainic acid lesions, in: Development and Chemical Specificity of Neurons (M. M. Cuenod, G. W. Kreutzberg, and F. E. Bloom, eds.), pp. 203–215, Elsevier/North-Holland, Amsterdam.CrossRefGoogle Scholar
  7. 7.
    Cotman, C. W., Lewis, E. R., Hand, D., 1981, The critical afferent theory: A mechanism to account for septohippocampal development and plasticity, in: Proceedings in the Life Sciences (H. Flohr and W. Precht, eds.), pp. 13–26, Springer-Verlag, Berlin.Google Scholar
  8. 8.
    Cotman, C. W., and Nadler, J. V., 1978, Reactive synaptogenesis in the hippocampus, in: Neuronal Plasticity, (C. W. Cotman, ed.), pp. 227–271, Raven Press, New York.Google Scholar
  9. 9.
    Cotman, C. W., and Scheff, S. W., 1979, Synaptic growth in aged animals, in: Aging, Vol. 8 (E. Cherkin, C. E. Finch, N. Kharash, T. Makinodan, F. L. Scott, and B. L. Strehler, eds.), pp. 109–120, Raven Press, New York.Google Scholar
  10. 10.
    Ebendal, T., Olson, L., Seiger, A., and Hedlun, K. O., 1980, Nerve growth factors in the rat iris, Nature (London), 286:25.CrossRefGoogle Scholar
  11. 11.
    Fonnum, F., 1970, Topographical and subcellular localization of choline acetyltransferase in rat hippocampal region, J. Neurochem. 17:1029.PubMedCrossRefGoogle Scholar
  12. 12.
    Gash, D., and Sladek, J. R., Jr., 1980, Vasopressin neurons grafted into Brattleboro rats: Viability and activity, Peptides 1:11.PubMedCrossRefGoogle Scholar
  13. 13.
    Gash, D., Sladek, J. R., Jr., and Sladek, C. D., 1980, Functional development of grafted vasopressin neurons, Science 210:1367.PubMedCrossRefGoogle Scholar
  14. 14.
    Hokfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, G., Pernow, B., and Goldstein, M., 1978, Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine containing neurons in the rat central nervous system, Neuroscience 3:517.PubMedCrossRefGoogle Scholar
  15. 15.
    Holets, V. R., and Cotman, C. W., 1984, Postnatal development of the serotonin innervation of the hippocampus and dentate gyrus: Normal development and reinnervation following raphe implants, J. Comp. Neurol., in press.Google Scholar
  16. 16.
    Houser, G., Crawford, G., Anderson, L., Barber, R., Salvaterra, P. M., and Vaughn, J. E., 1982, Immunocytochemical localization of cholinergic neurons with a monoclonal antibody to choline acetyltransferase, Soc. Neurosci. Abstri. 8:662.Google Scholar
  17. 17.
    Lewis, E. R., and Cotman, C. W., 1980, Factors specifying the development of synapse number in the rat dentate gyrus: Effects of partial target loss, Brain Res. 191:35.PubMedCrossRefGoogle Scholar
  18. 18.
    Lewis, E. R., and Cotman, C. W., 1982, Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. II. Absence of guidance by degenerative debris, J. Neurosci. 2:66.PubMedGoogle Scholar
  19. 19.
    Lewis, E. R., and Cotman, C. W., 1982, Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. III. Competitive interactions, Brain Res. 233:29.PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis, E. R., and Cotman, C. W., 1983, Neurotransmitter characteristics of brain grafts: Striatal and septal tissues form the same laminated input to hippocampus, Neuroscience 8:57.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis, E. R., Mueller, J. C., and Cotman, C. W., 1980, Neonatal septal implants: Development of afferent lamination in the rat dentate gyrus, Brain Res. Bull. 5:217.PubMedCrossRefGoogle Scholar
  22. 22.
    Lo, R. Y. S., and Levine, R. L., 1980, Time course and pattern of optic fiber regeneration following tectal lobe removal in the goldfish, J. Comp. Neurol. 191:295.PubMedCrossRefGoogle Scholar
  23. 23.
    Loy, R., Milner, T. A., and Moore, R. Y., 1980, Sprouting of sympathetic axons in the hippocampal formation: Conditions necessary to elicit growth, Exp. Neurol. 67:399.PubMedCrossRefGoogle Scholar
  24. 24.
    Loy, R., Koziell, J. E., and Moore, R. Y., 1980, Noradrenergic innervation of adult rat hippocampal formation, J. Comp. Neurol. 189:699.PubMedCrossRefGoogle Scholar
  25. 25.
    Lundborg, G., Longo, F. M., and Varon, S., 1982, Nerve regeneration model and trophic factors in vivo, Brain Res. 232: 157.PubMedCrossRefGoogle Scholar
  26. 26.
    Manthorpe, M., Nieto-Sampedro, M., Skaper, S. D., Lewis, E. R., Barbin, G., Longo, F. M., Cotman, C. W., and Varon, S., 1983, Neuronotrophic activity in brain wounds of the developing rat: Correlations with implant survival in the wound cavity, Brain Res. 267:47.PubMedCrossRefGoogle Scholar
  27. 27.
    Matthews, D. A., Nadler, J. V., Lynch, G. S., and Cotman, C. W., 1974, Development of cholinergic innervation in the hippocampal formation of the rat, Dev. Biol. 36:130.PubMedCrossRefGoogle Scholar
  28. 28.
    Mellgren, S. I., and Srebro, B., 1973, Changes in acetylcholinesterase and distribution of degenerating fibers in the hippocampal region after septal lesions in the rat, Brain Res. 52:19.PubMedCrossRefGoogle Scholar
  29. 29.
    Moore, R. Y., 1975, Monoamine neurons innervating the hippocampal formation and septum: Organization and response to injury, in: The Hippocampus, Vol. I (R. L. Isaacson and K. H. Pribram. eds), pp. 215–237 Plenum Press, New York.Google Scholar
  30. 30.
    Moore, R. Y., and Halaris, A. E., 1975, Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat, J. Comp. Neurol. 164:171.PubMedCrossRefGoogle Scholar
  31. 31.
    Nadler, J. V., Cotman, C. W., and Lynch, G. S., 1977, Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. I. Time course after complete unilateral entorhinal lesion at various ages, J. Comp. Neurol. 171:561.PubMedCrossRefGoogle Scholar
  32. 32.
    Nadler, J. V., Mathews, D. A., Cotman, C. W., and Lynch, G. S., 1974, Development of cholinergic innervation in the hippocampal formation of the rat. II. Quantitative changes in choline acetyltransferase and acetylcholinesterase activity, Dev. Biol. 36: 142.PubMedCrossRefGoogle Scholar
  33. 33.
    Nieto-Sampedro, M., Lewis, E. R., Cotman, C. W., Manthorpe, M., Skaper, S. D., Barbin, G., Longo, F. M., and Varon, S., 1982, Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site, Science 217:860.PubMedCrossRefGoogle Scholar
  34. 34.
    Ramón y Cajal, S., 1959, Degeneration and Regeneration of the Nervous System (R. M. May, translator), Hafner, New York.Google Scholar
  35. 35.
    Shelton, D. L., Nadler, J. V., and Cotman, C. W., 1979, Development of high affinity choline uptake and associated acetylcholine synthesis in the rat fascia dentata, Brain Res. 163:263.PubMedCrossRefGoogle Scholar
  36. 36.
    Steinbusch, H. W. M., 1981, Distribution of serotonin-immunoreactivity in the central nervous system of the rat—Cell bodies and terminals, Neuroscience 6:557.PubMedCrossRefGoogle Scholar
  37. 37.
    Stenevi, U. A., Björklund, A., and Svendgaard, N. A., 1976, Transplants of central and peripheral monoamine neurons in the adult rat brain: Techniques and conditions for survival, Brain Res. 114:1.PubMedCrossRefGoogle Scholar
  38. 38.
    Storm-Mathisen, J., 1970, Quantitative histochemistry of acetylcholinesterase in rat hippocampal region correlated to histochemical staining, J. Neurochem. 17:739.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Carl W. Cotman
    • 1
  1. 1.Department of PsychobiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations