Advertisement

The Use of Fetal Hypothalamic Transplants in Developmental Neuroendocrinology

  • Charles M. Paden
  • Ann-Judith Silverman
  • Ulf Stenevi
  • Bruce S. McEwen

Abstract

Developmental neuroendocrinology is a two-way street. We wish to know not only how the hypothalamic—pituitary complex comes to govern the activity of the endocrine glands, but also to understand the roles endocrine secretions may play in neural development. The introduction of techniques that permit isolated pieces of embryonic brain to survive, grow, and differentiate following transplantation into adult host brains has provided a powerful new approach to these problems. We have been transplanting embryonic rat hypothalamus and preoptic area onto the choroidal pia of adult hosts in order to study the influence of hormones on differentiation of these areas and their acquisition of neuroendocrine function. In addition, we have begun to explore the ability of fetal hypothalamic transplants to modify the neuroendocrine physiology and behavior of the adult recipients.

Keywords

Sexual Differentiation Preoptic Area Gonadal Steroid Neuroendocrine Function Estradiol Benzoate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stenevi, U., Björklund, A., Kromer, L. F., Paden, C. M., Gerlach, J. L., McEwen, B. S., and Silverman, A.-J., 1980, Differentiation of embryonic hypothalamic transplants cultured on the choroidal pia in brains of adult rats, Cell Tissue Res. 205:217.PubMedCrossRefGoogle Scholar
  2. 2.
    Paden, C. M., Silverman, A.-J., McEwen, B. S., Stenevi, U., Björklund, A., and Thorngren, K. G., 1980, Hormonal effects on development of transplanted embryonic hypothalamus, Peptides 1(Suppl. 1):117.CrossRefGoogle Scholar
  3. 3.
    Glydon, R. S. J., 1957, The development of the blood supply of the pituitary in the albino rat with special reference to the portal vessels, J. Anat. 91:237.PubMedGoogle Scholar
  4. 4.
    Enemar, A., 1961, The structure and development of the hypophysial portal system in the laboratory mouse, with particular regard to the primary plexus, Arch. Zool. 13:203.Google Scholar
  5. 5.
    Björklund, A., Enemar, A., and Falck, B., 1968, Monoamines in the hypothalamohypophyseal system of the mouse with special reference to the ontogenetic aspects, Z. Zellforsch. Mikrosk. Anat. 89:590.PubMedCrossRefGoogle Scholar
  6. 6.
    Hyyppä, M., 1969, A histochemical study of the primary catecholamines in the hypothalamic neurons of the rat in relation to the ontogenetic and sexual differentiation, Z. Zelljorsch. Mikrosk, Anat. 98:550.CrossRefGoogle Scholar
  7. 7.
    Araki, S., Tȯran-Allerand, C. D., Ferin, M., and Van de Wiele, R. L., 1979, Immunoreactive gona-dotropin-releasing hormone (Gn-RH) during maturation in the rat: ontogeny of regional hypothalamic differences, Endocrinology 97:693.CrossRefGoogle Scholar
  8. 8.
    Chiappa, S. A., and Fink, G., 1977, Releasing factor and hormone changes in the hypothalamic-pituitary-gonadotrophin and adrenocorticotrophin systems before and after birth and puberty in male, female and androgenized female rats, J. Endocrinol. 72:211.PubMedCrossRefGoogle Scholar
  9. 9.
    Daikoku, S., Kawano, H., and Matsumura, H., 1978, In vivo and in vitro studies on the appearance of LHRH neurons in the hypothalamus of perinatal rats, Cell Tissue Res. 194:433.PubMedCrossRefGoogle Scholar
  10. 10.
    Silverman, A.-J., Goldstein, R., and Gadde, C., 1980, The ontogenesis of neurophysin-containing neurons in the mouse hypothalamus, Peptides 1(Suppl. 1):27.CrossRefGoogle Scholar
  11. 11.
    Vito, C. C., and Fox, T. O., 1979, Embryonic rodent brain contains estrogen receptors, Science 204:517.PubMedCrossRefGoogle Scholar
  12. 12.
    MacLusky, N. J., Lieberburg, I., and McEwen, B. S., 1979, The development of estrogen receptor systems in the rat brain: Perinatal development, Brain Res. 178:129.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffman, G. E., Dick, L. B., and Gash, D., 1980, Development of somatostatin neurons: Examination by the technique of combined autoradiography and immunocytochemistry, Peptides 1(Suppl. 1):79.CrossRefGoogle Scholar
  14. 14.
    Vandesande, F., Dierickx, K., and DeMey, J., 1975, Identification of the vasopressin—neurophysin producing neurons of the rat suprachiasmatic nuclei, Cell Tissue Res. 156:377.PubMedGoogle Scholar
  15. 15.
    Gash, D., Sladek, C. D., and Sladek, J. R., Jr., 1980, A model system for analyzing functional development of transplanted peptidergic neurons, Peptides 1(Suppl. 1):125.CrossRefGoogle Scholar
  16. 16.
    Ward, I., and Weisz, J. M., 1980, Maternal stress alters plasma testosterone in fetal males, Science 207:328.PubMedCrossRefGoogle Scholar
  17. 17.
    Weisz, J., and Ward, I. L., 1980, Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring, Endocrinology 106:306.PubMedCrossRefGoogle Scholar
  18. 18.
    Chatelain, A., Dupouy, J.-P., and Allaume, P., 1980, Fetal-maternal adrenocorticotropin and corticosterone relationships in the rat: Effects of maternal adrenalectomy, Endocrinology 106:1297.PubMedGoogle Scholar
  19. 19.
    Milkovic, K., Paunovic, J., Kniewald, Z., and Milkovic, S., 1973, Maintenance of the plasma corticosterone concentration of adrenalectomized rat by the fetal adrenal glands, Endocrinology 93: 115.PubMedCrossRefGoogle Scholar
  20. 20.
    Negellen-Perchellet, E., and Cohen, A., 1975, Effect of ether inhalation by adrenalectomized pregnant rats on the adrenal corticosterone concentration in normal, decapitated, and encephalectomized fetuses, Neuroendocrinology 17:225.PubMedCrossRefGoogle Scholar
  21. 21.
    Toran-Allerand, C. D., 1980, Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro. II. Morphological correlates and hormonal specificity, Brain Res. 189:413.PubMedCrossRefGoogle Scholar
  22. 22.
    McEwen, B. S., Biegon, A., Davis, P. G., Krey, L. C., Luine, V. N., McGinnis, M. Y., Paden, C. M., Parsons, B., and Rainbow, T. C., 1982, Steroid hormones: Humoral signals which alter brain cell properties and functions, in: Recent Progress in Hormone Research, Vol. 38 (R. O. Greep, ed.), pp. 41–83, Academic Press, New York.Google Scholar
  23. 23.
    Goy, R. W., and McEwen, B. S. (eds.) 1980, Sexual Differentiation of the Brain, MIT Press, Cambridge, Mass.Google Scholar
  24. 24.
    Gerall, A. A., and Ward, I. L., 1966, Effects of prenatal exogenous androgen on the sexual behavior of the female albino rat, J. Comp. Physiol. Psychol. 62:370.CrossRefGoogle Scholar
  25. 25.
    Grady, K. L., Phoenix, C. H., and Young, W. C., 1965, Role of the developing rat testis in differentiation of the neural tissues mediating mating behavior, J. Comp. Physiol. Psychol. 59: 176.PubMedCrossRefGoogle Scholar
  26. 26.
    vom Saal, F. S., and Bronson, F. H., 1978, In utero proximity of female mouse fetuses to males: Effect on reproductive performance during later life, Biol. Reprod. 19:842.CrossRefGoogle Scholar
  27. 27.
    Ward, I. L., 1971, Prenatal stress feminizes and demasculinizes the behavior of males, Science 175:82.CrossRefGoogle Scholar
  28. 28.
    Gorski, R. A., Harlan, R. E., Jacobson, C. D., Shryne, J. E., and Southam, A. M., 1980, Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat brain, J. Comp. Neurol. 193:529.PubMedCrossRefGoogle Scholar
  29. 29.
    Reddy, V. V. R., Naftolin, F., and Ryan, K. J., 1974, Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rats, Endocrinology 94:117.PubMedCrossRefGoogle Scholar
  30. 30.
    Lieberburg, I., Wallach, G., and McEwen, B. S., 1977, The effects of an inhibitor of aromatization (l,4,6-androstatriene-3,17-dione) and an antiestrogen (CI628) on in vivo formed testosterone metabolites recovered from neonatal rat brain tissues and purified cell nuclei: Implications for sexual differentiation of the rat brain, Brain Res. 128:176.PubMedCrossRefGoogle Scholar
  31. 31.
    Davis, P. G., Chaptal, G. V., and McEwen, B. S., 1979, Independence of the differentiation of masculine and feminine sexual behavior in rats, Horm. Behav. 12:12.PubMedCrossRefGoogle Scholar
  32. 32.
    Döhler, K. D., 1978, Is female sexual differentiation hormone-mediated?, Trends Neurosci. 1:138.CrossRefGoogle Scholar
  33. 33.
    Toran-Allerand, C. D., 1981, Gonadal steroids and brain development—In vitro veritas?, Trends Neurosci. 4:118.CrossRefGoogle Scholar
  34. 34.
    Beach, F. A., 1976, Sexual attractivity, proceptivity and receptivity in female animals, Horm. Behav. 7:105.PubMedCrossRefGoogle Scholar
  35. 35.
    Moguilewsky, M., and Raynaud, J.-P., 1977, Progestin binding sites in the rat hypothalamus, pituitary and uterus, Steroids 30: 99.PubMedCrossRefGoogle Scholar
  36. 36.
    MacLusky, N. J., and McEwen, B. S., 1978, Oestrogen modulates progestin receptor concentrations in some brain regions but not in others, Nature (London) 274:276.CrossRefGoogle Scholar
  37. 37.
    Blaustein, J. D., and Wade, G. N., 1978, Progestin binding by brain and pituitary cell nuclei and female rat sexual behavior, Brain Res. 140:360.PubMedCrossRefGoogle Scholar
  38. 38.
    Parsons, B., MacLusky, N. J., Krey, L., Pfaff, D. W., and McEwen, B. S., 1980, The temporal relationship between estrogen-inducible progestin receptors in the female rat brain and the time course of estrogen activation of mating behavior, Endocrinology 107:774.PubMedCrossRefGoogle Scholar
  39. 39.
    Stillman, M. A., Recht, L. D., Rosario, S. L., Seif, S. M., Robinson, A. G., and Zimmerman, E. A., 1977, The effect of adrenalectomy and glucocorticoid replacement on vasopressin and vasopressin-neurophysin in the zona externa of the rat, Endocrinology 101:42.PubMedCrossRefGoogle Scholar
  40. 40.
    Silverman, A.-J., Hoffman, D., Gadde, C. A., Krey, L. C., and Zimmerman, E. A., 1981, Andrenal steroid inhibition of the vasopressin-neurophysin neurosecretory system to the median eminence of the rat: Differential effects of corticosterone and deoxycorti costerone administration after adrenalectomy, Neuroendocrinology 32:129.PubMedCrossRefGoogle Scholar
  41. 41.
    Brownstein, M. J., Russell, J. T., and Gainer, H., 1980, Synthesis, transport, and release of posterior pituitary hormones, Science 207:373.PubMedCrossRefGoogle Scholar
  42. 42.
    Pettengill, O. S., Faulkner, C. S., Wurster-Hill, D. H., Maurer, L. H., Sorenson, G. D., Robinson, A. G. and Zimmerman, E. A., 1977, Isolation and characterization of a hormone-producing cell line from human small cell anaplastic carcinoma of the lung, J. Natl. Cancer Inst. 58:511.PubMedGoogle Scholar
  43. 43.
    Sinding, C., Robinson, A. G., Seif, S. M., and Schmid, P. G., 1980, Neurohypophyseal peptides in the developing rat fetus, Brain Res. 195:177.PubMedCrossRefGoogle Scholar
  44. 44.
    Sinding, C., Czernichow, P., Seif, S. M., and Robinson, A. G., 1980, Quantitative changes in neurohypophyseal peptides in the developing brain, Peptides 1(Suppl. 1):45.CrossRefGoogle Scholar
  45. 45.
    Cotterrell, M., Balázs, R., and Johnson, A. L., 1972, Effects of corticosteroids on the biochemical maturation of rat brain: Postnatal cell formation, J. Neurochem. 19:2151.PubMedCrossRefGoogle Scholar
  46. 46.
    Bohn, M. C., and Lauder, J. M., 1978, The effects of neonatal hydrocortisone on rat cerebellar development, Dev. Neurosci. 1:250.CrossRefGoogle Scholar
  47. 47.
    Howard, E., 1973, Hormonal effects on the growth and DNA content of the developing brain, in: Biochemistry of the Developing Brain, Vol. 2 (A. Himwich, ed.), pp. 1–68, Dekker, New York.Google Scholar
  48. 48.
    Sze, P. Y., 1976, Glucocorticoid regulation of the serotonergic system of the brain, in: Advances in Biochemical Psychopharmacology Vol. 15 (E. Costa, E. Giacobini, and R. Paoletti eds.), pp. 251–265, Raven Press, New York.Google Scholar
  49. 49.
    McLennan, I. S., Hill, C. E., and Hendry, I. A., 1980, Gluco-cortico-steroids modulate transmitter choice in developing superior cervical ganglion, Nature (London) 283:206.CrossRefGoogle Scholar
  50. 50.
    Mathews, D., and Edwards, D. A., 1977, Involvement of the ventromedial and anterior hypothalamic nuclei in the hormonal induction of receptivity in the female rat, Physiol. Behav. 19:319.PubMedCrossRefGoogle Scholar
  51. 51.
    Morrell, J. I., and Pfaff, D. W., 1982, Characterization of estrogen-concentrating hypothalamic neurons by their axonal projections, Science 217:1273.PubMedCrossRefGoogle Scholar
  52. 52.
    Sakuma, Y., and Pfaff, D. W., 1979, Facilitation of female reproductive behavior from mesencephalic central grey in the rat, Am. J. Physiol. 237(5):R278.PubMedGoogle Scholar
  53. 53.
    Sakuma, Y., and Pfaff, D. W., 1979, Mesencephalic mechanisms for integration of female reproductive behavior in the rat, Am. J. Physiol. 237(5):R285.PubMedGoogle Scholar
  54. 54.
    Pfaff, D. W., 1980, Estrogens and Brain function, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  55. 55.
    Björklund, A., and Stenevi, U., 1979, Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants, Brain Res. 177:555.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Charles M. Paden
    • 1
  • Ann-Judith Silverman
    • 2
  • Ulf Stenevi
    • 3
  • Bruce S. McEwen
    • 4
  1. 1.Department of BiologyMontana State UniversityBozemanUSA
  2. 2.Department of Anatomy, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  3. 3.Departments of Histology and OpthalmologyUniversity of LundLundSweden
  4. 4.Laboratory of NeuroendocrinologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations