Advertisement

Morphological and Functional Properties of Transplanted Vasopressin Neurons

  • John R. SladekJr.
  • Don M. Gash

Abstract

Three basic principles in neural transplantation have been demonstrated by studies conducted since 1970. Building on the earlier experiments of Dunn,1 May,2 and Le Gros Clark,3 a number of investigators4–8 have shown that fetal CNS neurons survive and develop anatomically normal features in the host brain. Lund and Hauschka9 provided some of the first evidence that grafted neural tissue becomes structurally integrated with the parenchyma of the host nervous system by demonstrating that fiber projections are established between the host and the donor. An extensive literature now exists to support this concept that grafted neurons readily send efferent fibers into the host brain and in turn receive afferents from host neurons (see Chapter 4). Finally, the ability of transplanted neurons to synthesize and release neurohormones and neurotransmitters in an appropriate manner to effect host behavior has been documented in at least three different model systems.10–14 Thus, the principles of (1) graft viability, (2) structural integration, and (3) appropriate function have been described. At issue now is the precise definition of the limits and important variables of transplant development and function.

Keywords

Median Eminence Suprachiasmatic Nucleus Pituitary Stalk Vasopressin Release Magnocellular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunn, E. H., 1917, Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat, J. Comp. Neurol. 27:565.CrossRefGoogle Scholar
  2. 2.
    May, R. M., 1930, La greffe dans l’oeil de rat blanc adulte du tissu cerebral de rat nouveau-ne, Arch. Anat. Microsc. 26:433.Google Scholar
  3. 3.
    Le Gros Clark, W. E., 1940, Neuronal differentiation in implanted foetal cortical tissue, J. Neurol. Psychiatry 3:263.CrossRefGoogle Scholar
  4. 4.
    Das, G. D., and Altman, J., 1972, Studies on the transplantation of developing neural tissue in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats, Brain Res. 38:232.CrossRefGoogle Scholar
  5. 5.
    Das, G. D., 1974, Transplantation of embryonic neural tissue in the mammalian brain. I. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonatal rats, TITJ. Life Sci. 4:93.Google Scholar
  6. 6.
    Seiger, A., and Olson, L., 1977, Quantitation of fiber growth in transplanted central monoamine neurons, Cell Tissue Res. 179:285.PubMedCrossRefGoogle Scholar
  7. 7.
    Stenevi, U., Björklund, A., and Svendgaard, N. A., 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival, Brain Res. 114:1.PubMedCrossRefGoogle Scholar
  8. 8.
    Gash, D., and Sladek, J. R., Jr., 1980, Vasopressin neurons grafted into Brattleboro rats: Viability and activity, Peptides 1: 11.PubMedCrossRefGoogle Scholar
  9. 9.
    Lund, R. A., and Hauschka, S. D., 1976, Transplanted neural tissue develops connections with host rat brain, Science 193:582.PubMedCrossRefGoogle Scholar
  10. 10.
    Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, Ȧ., Olson, L., and Wyatt, R. J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204:643.PubMedCrossRefGoogle Scholar
  11. 11.
    Gash, D., Sladek, C. D., and Sladek, J. R., Jr., 1980, A model system for analyzing functional development of transplanted peptidergic neurons, Peptides l(Suppl. 1): 125.CrossRefGoogle Scholar
  12. 12.
    Gash, D. M., Boer, G. J., Notter, M. F. D. and Sladek, J. R., Jr., 1983 Transplanted vasopressin neurons and central nervous system effects of vasopressin, Prog. Brain Res. 60:189–201.PubMedCrossRefGoogle Scholar
  13. 13.
    Gash, D., Sladek, J. R., Jr., and Sladek, C. D., 1980, Functional development of grafted vasopressin neurons, Science 201:1367.CrossRefGoogle Scholar
  14. 14.
    Krieger, D. T., Perlow, M. J., Gibson, M. J., Davies, T. F., Zimmerman, E. A., Ferrin, M., and Charlton, H. M., 1982, Brain grafts reverse hypogonadism of gonadotropin releasing hormone deficiency, Nature (London) 298:468.CrossRefGoogle Scholar
  15. 15.
    Sladek, J. R., Jr., Schöler, J., Notter, M. F. D., and Gash, D. M., 1982, Immunohistochemical analysis of vasopressin neurons transplanted into the Brattleboro rat, Ann. N.Y. Acad. Sci. 394:102.PubMedCrossRefGoogle Scholar
  16. 16.
    Gash, D. M., Warren, P. H., Dick, L. B., Sladek, J. R., Jr., and Ison, J. R., 1982, Behavioral modification in Brattleboro rats due to vasopressin administration and neural transplantation, Ann. N.Y. Acad. Sci. 394:672.PubMedCrossRefGoogle Scholar
  17. 17.
    Sokol, E. W., Zimmerman, E. A., Sawyer, W. H., and Robinson, A. G., 1976, The hypothalamic-neurohypophyseal system of the rat: Localization and quantitation of neurophysin by light microscopic immunocytochemistry in normal rats and in Brattleboro rats deficient in vasopressin and a neurophysin, Endocrinology 98:1176.PubMedCrossRefGoogle Scholar
  18. 18.
    Valtin, H., 1982, The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls, Ann. N.Y. Acad. Sci. 394:1.PubMedCrossRefGoogle Scholar
  19. 19.
    Scharrer, E., and Scharrer, B., 1954, Hormones produced by neurosecretory cells, Recent Prog. Horm. Res. 10:183.Google Scholar
  20. 20.
    Bargmann, W., 1949, Über der neurosekretorische vernupfung vonhypothalamus and neurohypophyse, Z. Zelljorsch. Mikrosk. Anat. 34:610.Google Scholar
  21. 21.
    Bargmann, W., and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Sci. 39:255.Google Scholar
  22. 22.
    Silverman, A. J., and Zimmerman, E. A., 1983, Magnocellular neurosecretory system, Annu. Rev. Neurosci. 6:357.PubMedCrossRefGoogle Scholar
  23. 23.
    Land, H., Schutz, G., Schmale, H., and Richter, D., 1982, Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor, Nature (London) 45:299.CrossRefGoogle Scholar
  24. 24.
    Brownstein, M. J., 1983, Biosynthesis of vasopressin and oxytocin, Annu. Rev. Physiol. 45:129.PubMedCrossRefGoogle Scholar
  25. 25.
    Verney, E. B., 1947, The antidiuretic hormone and the factors which determine its release, Proc. R. Soc. London 135:25.CrossRefGoogle Scholar
  26. 26.
    Kimura, T., Share, L., Wang, B. C., and Crofton, J. T., 1981, The role of central adrenoreceptors in the control of vasopressin release and blood pressure, Endocrinology 108:1829.PubMedCrossRefGoogle Scholar
  27. 27.
    Gash, D. M., and Thomas, G. J., 1983, What is the importance of vasopressin in memory processes?, Trends Neurosci. 6:197.CrossRefGoogle Scholar
  28. 28.
    Swanson, L. W., and Kuypers, H. B. J. M., 1980, The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivision and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods, J. Comp. Neurol. 194:555.PubMedCrossRefGoogle Scholar
  29. 29.
    Nilaver, G., Zimmerman, E. A., Wilkins, J., Michaels, J., Hoffman, D., and Silverman, A. J., 1980, Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat, Neuroendocrinology 30:150.PubMedCrossRefGoogle Scholar
  30. 30.
    Sladek, C. D., 1983, Regulation of vasopressin release by neurotransmitters, neuropeptides and osmotic stimuli, Prog. Brain Res. 60:71–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Watson, S. J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E., Nilaver, G., and van Wimersma Greidanus, T. B., 1982, Dynorphin and vasopressin: Common localization in magnocellular neurons, Science 216:85.PubMedCrossRefGoogle Scholar
  32. 32.
    Vanderhagen, J. J., Lofstra, F., Vandersande, F., and Dierickx, K., 1981, Coexistence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophyseal neurons, Cell Tissue Res. 221:227.CrossRefGoogle Scholar
  33. 33.
    Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guillemin, R., and Bloom, F., 1979, Hypothalamic enkephalin neurons may regulate the neurohypophysis, Nature (London) 277:653.CrossRefGoogle Scholar
  34. 34.
    Phillips, I., Weyhenmeyer, J., Felix, J., Ganten, D., and Hoffman, W. E., 1979, Evidence for an endogenous brain renin-angiotensin system, Fed. Proc. 38:2260.PubMedGoogle Scholar
  35. 35.
    Gash, D. M., Roos, T. B., and Chambers, W. F., 1975, Development of Rathke’s pouch transplanted into adult hypophysectomized female rats, Neuroendocnnology 19:214.CrossRefGoogle Scholar
  36. 36.
    Gash, D. M., Boer, G. J., Notter, M. F. D., and Sladek, J. R., Jr., 1983, Development and function of transplanted vasopressin neurons, Psychopharmacol. Bull. 19:308.Google Scholar
  37. 37.
    McNeill T. H., and Sladek, J. R., Jr., 1980, Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. V. A methodology for examining correlative monoamine-neuropeptide neuroanatomy, Brain Res. Bull. 5:599.PubMedCrossRefGoogle Scholar
  38. 38.
    McNeill, T. H., and Sladek, J. R., Jr., 1980, Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. II. Correlative distribution of catecholamine varicosities and magnocellular neurosecretory neurons in the rat supraoptic and paraventricular nuclein J. Comp. Neurol. 193:1023.PubMedCrossRefGoogle Scholar
  39. 39.
    Sladek, J. R., Jr., Khachaturian, H., Hoffman, G. E., and Scholer, J., 1980, Aging of central endocrine neurons and their aminergic afferents, Peptides 1(Suppl. 1):141.CrossRefGoogle Scholar
  40. 40.
    Armstrong, W. E., Sladek, C. D., and Sladek, J. R., Jr., 1982, Characterization of noradrenergic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system, Endocrinology 111:273.PubMedCrossRefGoogle Scholar
  41. 41.
    Armstrong, D. M., Saper, C. B., Levey, A. I., Wainer, B. H., and Terry, R. D., 1983, Distribution of cholinergic neurons in rat brain: Demonstration by the immunocytochemical localization of choline acetyltransferase, J. Comp. Neurol. 216:53.PubMedCrossRefGoogle Scholar
  42. 42.
    Sladek, C. D., and Joynt, R. J., 1979, Characterization of cholinergic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system, Endocrinotogy 104:659.CrossRefGoogle Scholar
  43. 43.
    Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. Suppl. 367:1.PubMedGoogle Scholar
  44. 44.
    Sawchenko, P., and Swanson, L. W., 1982, Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and automatic responses, Science 214:685.CrossRefGoogle Scholar
  45. 45.
    McKellar, S., and Loewy, A. D., 1981, Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus in the rat, Brain Res. 217:351.PubMedCrossRefGoogle Scholar
  46. 46.
    Sladek, J. R., Jr., McNeill, T. H., Walker, P., and Sladek, C. D., 1979, Age-related alterations in monoamine and neurophysin systems in primate brain, in: Aging in Non-human Primates (D. M. Bowden, ed.), pp. 1–37, Van Nostrand-Reinhold, Princeton, N. J.Google Scholar
  47. 47.
    Davies, P., 1979, Neurotransmitter-related enzymes in senile dementia of the Alzheimer type, Brain Res. 171:319.PubMedCrossRefGoogle Scholar
  48. 48.
    Sladek, C. D., McNeill, T. H., Gregg, C. M., Blair, M. L., and Baggs, R. B., 1981, Vasopressin and renin response to dehydration in aged rats, Neurobiol. Aging 2:293.PubMedCrossRefGoogle Scholar
  49. 49.
    Vijayashankar, N., and Brody, H., 1979, A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging, J. Neuropathol. Exp. Neurol. 38: 490.PubMedCrossRefGoogle Scholar
  50. 50.
    Azmitia, E. C., Perlow, M. J., Brennon, M. J., and Lauder, J. M., 1981, Fetal raphe and hippocampal transplants into adult and aged C57BT/6N mice: A preliminary immunocytochemical study, Brain Res. Bull. 7:703.PubMedCrossRefGoogle Scholar
  51. 51.
    Moll, J., and de Wied, D., 1962, Observations on the hypothalamo-posthypophyseal system of the posterior lobectomized rat, Gen. Comp. Endocrinol. 2:215.PubMedCrossRefGoogle Scholar
  52. 52.
    Laszlo, F. A., and de Wied, D., 1966, Antidiuretic hormone content of the hypothalamo-neurohypophysial system and urinary excretion of antidiuretic hormone during the development of diabetes insipidus after lesions in the pituitary stalk, J. Endocrinol. 36:125.PubMedCrossRefGoogle Scholar
  53. 53.
    Dellmann, H. D., 1973, Degeneration and Regeneration of neurosecretory systems, Int. Rev. Cytol. 36:215.PubMedCrossRefGoogle Scholar
  54. 54.
    Gash, D. M., and Scott, D. E., 1980, Fetal hypothalamic transplants in the third ventricle of the adult rat brain, Cell Tissue Res. 211:191.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • John R. SladekJr.
    • 1
  • Don M. Gash
    • 1
  1. 1.Department of AnatomyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations