Neural Transplants in Mammals

A Historical Overview
  • Don M. Gash


The basic techniques of neural transplantation have long been within the repertoire of the neuroscientist and have been productively employed to address many of the major questions in neurobiology. With some notable exceptions, the animal models for grafting studies have come from the amphibian and avian classes. Only within the last 6 years have experiments examining the properties of transplanted mammalian central nervous system (CNS) tissue become widespread. It is illustrative that more papers on mammalian CNS grafts were published in 1980 alone than were published in the entire first 60 years (1890–1950) of work in this area (see Fig. 1). The present volume surveys the state of the art of neural transplantation in vertebrates. In the present chapter, we trace the slow development of the field of mammalian brain cell transplantation and examine the reasons why, until recently, there has been a relative dearth of studies on mammals as compared to other vertebrate classes.


Anterior Chamber Central Nervous System Neuron Neural Transplant Host Brain Monoaminergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saltykow, S., 1905, Versuche über Gehirnreplantation, zugleich ein Beitrag zur Kenntniss reactiver Vorgänge an den zelligen Gehirnelementen, Arch. Psychiatr. 40: 329.CrossRefGoogle Scholar
  2. 2.
    Thompson, W. G., 1890, Successful brain grafting, N.Y. Med. J. June 28: 701.Google Scholar
  3. 3.
    D’Abundo, G., 1913, Sulle manifestazioni di vitalita nei trapianti del tessuto nervoso, Riv. Ital. Neuropat. Psichiat. Elettroter 6:145.Google Scholar
  4. 4.
    Altobelli, R., 1914, Innesti cerebrali, Gazz. Int. Med. Chir. 17:25.Google Scholar
  5. 5.
    Dunn, E. H., 1917, Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat, J. Comp. Neurol. 27:565.CrossRefGoogle Scholar
  6. 6.
    May, R. M., 1930, La greffe dans l’oeil de rat blanc adulte du tissu cerebral de rat nouveau-ne, Arch. Anat. Microsc. Morphol. Exp., 26:433.Google Scholar
  7. 7.
    Murphy, J. B., and Sturm, E., 1923, Conditions determining the transplantability of tissues in the brain, J. Exp. Med. 38:183.PubMedCrossRefGoogle Scholar
  8. 8.
    Le Gros Clark, W. E., 1940, Neuronal differentiation in implanted foetal cortical tissue, J. Neurol. Psychiatry 3:263.CrossRefGoogle Scholar
  9. 9.
    May, R. M., 1945, Régénération cérébrale provoquée par la greffe intraoculaire simultanée de tissu cérébral de nouveau-né et de nerf sciatique chez la souris, Bull. Biol. Fr. Belg. 79:151.PubMedGoogle Scholar
  10. 10.
    May, R. M., 1949, Connexions entre des cellules cérébrales et des muscles de la cuisse dans leur greffe brephoplastique intra-oculaire simultanée chez la souris, Arch. Anat. Microsc. Morphol. Exp. 38:145.Google Scholar
  11. 11.
    May, R. M., 1952, La greffe brephoplastique intra-oculaire simultanée de tissu cérébral et de thymus vivant ou mort chez la souris, Arch. Anat. Microsc. Morphol. Exp. 41:237.Google Scholar
  12. 12.
    May, R. M, 1954, La greffe brephoblastique intraoculaire du cervelet chez la souris, Arch. Anat. Microsc. Morphol. Exp. 43:42.Google Scholar
  13. 13.
    May, R. M., 1955, Cerebral transplantation in mammals, Transplant. Bull. 2:62.Google Scholar
  14. 14.
    May, R. M., 1957, The possibilities of brephoplastic transplants, Ann. N.Y. Acad. Sci. 64:937.PubMedCrossRefGoogle Scholar
  15. 15.
    May, R. M., and Barres, M. C., 1962, La greffe brephoplastique de tissu cérébral sous la capsule du rein chez la souris, C.R. Acad. Sci. 254:2839.Google Scholar
  16. 16.
    Woolsey, D., Minckler, J., Rezende, N.,and Klemme, R., 1944, Human spinal cord transplant, Exp. Med. Surg. 2:93.Google Scholar
  17. 17.
    Greene, H. S. N., and Arnold, H., 1945, The homologous and heterologous transplantation of brain and brain tumors, J. Neurosurg. 2: 315.CrossRefGoogle Scholar
  18. 18.
    Royo, P. E., and Quay, W. B., 1959, Retinal transplantation from fetal to maternal mammalian eye, Growth 23:313.PubMedGoogle Scholar
  19. 19.
    Olson, L., and Malmfors, T., 1970, Growth characteristics of adrenergic nerves in the adult rat: Fluorescence, histochemical and 3H-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye, Acta. Physiol. Scand. Suppl. 348:1.PubMedGoogle Scholar
  20. 20.
    Das, G. D., and Altman, J., 1971, Transplanted precursors of nerve cells: Their fate in the cerebellums of young rats, Science 173:637.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoffer, B., Seiger, A., Ljungberg, T., and Olson, L., 1974, Electrophysiological and cytological studies of brain homografts in the anterior chamber of the eye: Maturation of cerebellar cortex, in oculo, Brain Res. 79:165.CrossRefGoogle Scholar
  22. 22.
    Stenevi, U., Björklund, A., and Svendgaard, N. A., 1976, Transplantation of central and peripheral monamine neurons to the adult rat brain: Techniques and conditions for survival, Brain Res. 114:1.PubMedCrossRefGoogle Scholar
  23. 23.
    Lund, R. D., and Hauschka, S. D., 1976, Transplanted neural tissue develops connections with host rat brain, Science 193:582.PubMedCrossRefGoogle Scholar
  24. 24.
    Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A. Olson, L., and Wyatt, R. J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204:643.PubMedCrossRefGoogle Scholar
  25. 25.
    Gash, D., Sladek, J. R., Jr., and Sladek, C. D., 1980, Functional development of grafted vasopressin neurons, Science 210:1367.PubMedCrossRefGoogle Scholar
  26. 26.
    Gash, D., Sladek, C. D. and Sladek, J. R., Jr., 1980, A model system for analyzing functional development of transplanted peptidergic neurons, Peptides 1(Suppl. 1):125.CrossRefGoogle Scholar
  27. 27.
    Anonymous, 1981, A Nature survey of the neurosciences, Nature (London) 293:515.CrossRefGoogle Scholar
  28. 28.
    DeJong, R. N., 1982, A History of Amencan Neurology, pp. 59–61, Raven Press, New York.Google Scholar
  29. 29.
    Ranson, S. W., 1914, Transplantation of the spinal ganglion with observations on the significance of the complex types of spinal ganglion cells, J. Comp. Neurol. 24:547.CrossRefGoogle Scholar
  30. 30.
    Spemann, H., 1921, Die erzeugung tierischer chimären durch heteroplastische embryonale transplantation zwischen, Triton cristatus und taeniatus, Arch. Entwicklungsmech. Org. 48:533.Google Scholar
  31. 31.
    Spemann, H., and Mangold, H., 1924, Über induktion von embryonalanlagen durch implantation art-fremder organisatoren, Arch. Mikrosk. Anat. Entwicklungsmech. 100:599–638.Google Scholar
  32. 32.
    May, R. M., 1932, Répercussions de la transplantation nerveuse chez le porte-greffe, Encephale 27:885.Google Scholar
  33. 33.
    Young, J. Z., 1942, The functional repair of nervous tissue, Physiol. Rev. 22:318.Google Scholar
  34. 34.
    Carlsson, A., Falck, B., and Hillarp, N. Å., 1962, Cellular localization of brain monamines, Acta Physiol. Scand. 56(Suppl. 196):1.Google Scholar
  35. 35.
    Falck, B., and Owman, C., 1965, A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monamines, Acta Univ. Lund. Sect. 2 1965:1.Google Scholar
  36. 36.
    Yahr, M. D., 1981, Introduction, in: Research Progress in Parkinson’s Disease (F. C. Rose and R. Capildeo, eds.), pp. 3–8, Pitman Medical, London.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Don M. Gash
    • 1
  1. 1.Department of AnatomyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations