Advertisement

Molecular Bases of Neuronal Individuality

Lessons from Anatomical and Biochemical Studies with Monoclonal Antibodies
  • Lois Alterman Lampson

Abstract

Monoclonal antibody analysis has been particularly welcome for studies of the nervous system. The number of cell types, their delicate and often extensive processes, their dense interconnections, and the inability of mature cells to divide in vitro make it particularly difficult to obtain separated subpopulations for conventional immunization or antibody purification. Thus, the possibility of obtaining cell-type-specific antibodies by cloning the immune response to a mixed population is especially attractive.

Keywords

Intermediate Filament Amacrine Cell Neuronal Individuality Antigenic Determinant Neuroblastoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barclay, A., Letarte-Muirhead, M., Williams, A., and Faulkes, R., 1976, Chemical characterization of the Thy-1 glycoproteins from the membranes of rat thymocytes and brain, Nature 263:563–567.CrossRefGoogle Scholar
  2. Barnstable, C., 1980, Monoclonal antibodies which recognize different celltypes in the rat retina, Nature 286:231–235.CrossRefGoogle Scholar
  3. Barnstable, C., Bodmer, W., Brown, G., Galfre, G., Milstein, C., Williams, A., and Ziegler, A., 1978, Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens—New tools for genetic analysis, Cell 14:9–14.CrossRefGoogle Scholar
  4. Bechtol, K., Jonak, Z., and Kennett, R., 1980, Germ-cell related and nervous-system-related differentiation and tumor antigens, in: Monoclonal Antibodies, Hybridomas: A New Dimension in BiologicalAnalyses (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 171–184.Google Scholar
  5. Berah, M., Hors, J., and Dausset, J., 1970, A study of HL-A antigens in human organs, Transplantation 9:185.CrossRefGoogle Scholar
  6. Biedler, J., Helson, L., and Spengler, B., 1973, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture, Cancer Res. 33:2643.Google Scholar
  7. Bodmer, W. F., 1972, Evolutionary significance of the HL-A system, Nature 237:139–145.CrossRefGoogle Scholar
  8. Bodmer, W. F., 1981, HLA structure and function: A contemporary view, Tissue Antigens 17:9–20.CrossRefGoogle Scholar
  9. Branton, D., Cohen, C., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the human erythrocyte membrane, Cell 24:24–32.CrossRefGoogle Scholar
  10. Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes coding for proteins, Annu. Rev. Biochem. 50:349–383.CrossRefGoogle Scholar
  11. Brecha, N., Karten, H., and Schenker, C., 1981, Neurotensin-like and somatostatin-like immunoreactivity within amacrine cells of the retina, Neuroscience 6:1329–1340.CrossRefGoogle Scholar
  12. Brown, G., Biberfeld, P., Christensson, B., and Mason, D., 1979, The distribution of HLA on human lymphoid, bone marrow and peripheral blood cells, Eu. J. Immunol. 9,272–275.CrossRefGoogle Scholar
  13. Brown, W., Barclay, A., Sunderland, C., and Williams, A., 1981, Identification of a glycophorin-like molecule at the cell surface of rat thymocytes, Nature 289:456–460.CrossRefGoogle Scholar
  14. Burnette, W., 1981, “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A, Anal. Biochem. 112:95–203.CrossRefGoogle Scholar
  15. Cohen, J., and Selvendran, S., 1981, A neuronal cell-surface antigen is found in the CNS but not in peripheral neurones, Nature 291:421–423.CrossRefGoogle Scholar
  16. Cotner, T., Mashimo, H., Kung, P., Goldstein, G., and Strominger, J., 1981, Human T cell surface antigens bearing a structural relationship to HLA antigens, Proc. Natl. Acad. Sci. USA 78:3858–3862.CrossRefGoogle Scholar
  17. Cullen, S., Kindle, C., Scheffler, D., and Cowing, C., 1981, Differential glycosylation of murine B cell and spleen adherent cell Ia antigens, J. Immunol. 27:1478–1489.Google Scholar
  18. Crick, F., 1979, Split genes and RNA splicing, Science 204:264–271.CrossRefGoogle Scholar
  19. Dausset, J., 1981, The major histocompatibility complex in man. Past, present, and future concepts, Science 213:1469–1474.CrossRefGoogle Scholar
  20. Dockray, G., and Gregory, R., 1980, Relations between neuropeptides and gut hormones, Proc. R.Soc.Lond.B 210:151–164.CrossRefGoogle Scholar
  21. Dowling, J., 1975, The vertebrate retina, In: The Nervous System (D. Tower, ed.), Volume I: The BasicNeurosciences, Raven Press, New York, pp. 91–100.Google Scholar
  22. Dulbecco, R., Unger, M., Bologna, M., Battifora, H., Syka, P., and Okada, S., 1981, Cross-reactivity between Thy-1 and a component of intermediate filaments demonstrated using a monoclonal antibody, Nature 292:772–774.CrossRefGoogle Scholar
  23. Early, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wall, R., and Hood, L., 1980, Two mRNAs can be produced from a single immunoglobulin gene by alternative RNA processing pathways, Cell 20:313–319.CrossRefGoogle Scholar
  24. Edelman, G., 1983, Cell adhesion molecules, Science 219:450–457.CrossRefGoogle Scholar
  25. Evans, A. E., 1980, Natural history of neuroblastoma, Prog. Cancer Res. Ther. 12:221.Google Scholar
  26. Fitchen, J. H., Foon, K. A., and Kline, M. J., 1981. The antigenic characteristics of hematopoietic stem cells, New Engl. J. Med. 305:17.CrossRefGoogle Scholar
  27. Fraser, S., and Hunt, R., 1980, Retintotectal specificity: Models and experiments in search of a mapping function, Annu. Rev. Neurosci. 3:319–352.CrossRefGoogle Scholar
  28. Garson, J., Beverley, P., Coakham, H., and Harper, E., 1982, Monoclonal antibodies against human T lymphocytes label Purkinje neurones of many species, Nature 298:375–377.CrossRefGoogle Scholar
  29. Geisler, N., Plessmann, U., and Weber, K., 1982, Related amnio acid sequences in neurofilamens and non-neuronal intermediate filaments, Nature 296:448–450.CrossRefGoogle Scholar
  30. Gilbert, W., 1978, Why genes in pieces, Nature 271:501.CrossRefGoogle Scholar
  31. Gottlieb, A., Engelhard, M., Kunkel, H., Tanigaki, N., and Pressman, D., 1977, A cross-reaction between β2-microglobulin and κ light chains, J. Immunol. 9:2001–2004.Google Scholar
  32. Grumet, M., Rutishauser, U., and Edelman, G., 1982, Neural cell adhesion molecule is on embryonic muscle and mediates adhesion to nerve cells in vitro, Nature 295:693–695.CrossRefGoogle Scholar
  33. Harris, H., 1979, Multilocus enzymes in man, in: Human Genetics: Possibilities and Realities, Ciba Foundation Symposium 66 (N.S.), Excerpta Medica, Amsterdam, pp. 187–199.Google Scholar
  34. Heitzmann, J., Giotta, G., and Cohn, M., 1981, Monoclonal antibodies and the identification of cerebellar cell lines, in: Monoclonal Antibodies to Neural Antigens (R. McKay, M. Raff, and L. Reichardt, eds.), Cold Spring Harbor, pp. 51–60.Google Scholar
  35. Herschman, H., and Lerner, M., 1973, Production of a nervous-system-specific protein (14–3-2) by human neuroblastoma cells in culture, Nature New Biol. 241:242–244.Google Scholar
  36. Ho, R., and Goodman, C., 1982, Peripheral pathways are pioneered by an array of central and peripheral neurones in grasshopper embryos, Nature 297:404–406.CrossRefGoogle Scholar
  37. Hogg, N., Slusarenko, M., Cohen, J., and Reiser, J., 1981, Monoclonal antibody with specificity for monocytes and neurons, Cell 24:875–884.CrossRefGoogle Scholar
  38. Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J., and Schultzberg, M., 1980, Peptidergic neurones, Nature 282:515–521.CrossRefGoogle Scholar
  39. Hood, L., Campbell, J., and Elgin, S. 1975, The organization, expression, and evolution of antibody genes and other multigene families, Annu. Rev. Genet. 9:305–353.CrossRefGoogle Scholar
  40. Hood, L., Steinmetz, M., and Goodenow, R., 1982, Genes of the major histocompatibility complex, Cell 28:685–687.CrossRefGoogle Scholar
  41. Imada, M., and Sueoka, N., 1980, Clonal sublines of rat neurotumor RT4 and cell differentiation, Dev.Biol. 79:199–207.CrossRefGoogle Scholar
  42. Kabat, E., 1966, The nature of an antigenic determinant, J. Immunol. 97:1–11.Google Scholar
  43. Karten, H., and Brecha, N., 1980, Localization of substance P immunoreactivity in amacrine cells of the retina, Nature 283:87–88.CrossRefGoogle Scholar
  44. Karten, H., and Brecha, N., 1981, Biochemical and morphological specificity of retinal amacrine cells: Immunohistochemical findings, in: Monoclonal Antibodies to Neural Antigens (R. McKay, M. Raff, and L. Reichardt, eds.), Cold Spring Harbor, pp. 203–207.Google Scholar
  45. Kennett, R., Jonak, Z., and Bechtol, K., 1980, Monoclonal antibodies against human tumor-associated antigens, in: Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analysis (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 155–168.Google Scholar
  46. Kennett, R. H., Jonak, Z. L., Bechtol, K. B., and Byrd, R., 1981, Monoclonal antibodies as probes for cell surface changes in human malignancy, in: Fundamental Mechanisms in Human Cancer Immunology (J. Saunders, J. Daniels, B. Serrou, C. Rosenfeld, and C. Denny, eds.), Elsevier/North-Holland, New York, pp. pp. 331–348.Google Scholar
  47. Kennett, R., Jonak, S., Momoi, M., Glick, M., and Lampson, L., 1982, Analysis of cell surface molecules on human neuroblastoma cells and leukemia cells, in: Monoclonal Antibodies in DrugDevelopment, American Society for Pharmacology and Experimental Therapeutics, Bethesda, Maryland, pp. 91–207.Google Scholar
  48. Kolb, H., 1979, The inner plexiform layer in the retina of the cat: Electron microscopic observations, J. Neurocytol. 8:295–329.CrossRefGoogle Scholar
  49. Kornguth, S., Langer, E., and Scott, G., 1981, Antigenic properties of large ganglion cells isolated from ox retina, Exp. Eye Res. 33:413–432.CrossRefGoogle Scholar
  50. Lagenauer, C., Sommer, I., and Schachner, M., 1980, Subclass of astroglia in mouse cerebellum recognized by monoclonal antibody, Dev. Biol. 79:367–378.CrossRefGoogle Scholar
  51. Lampson, L., 1980, Immunoprecipitation with monoclonal antibodies, in: Monoclonal AntibodiesHybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 395–397.Google Scholar
  52. Lampson, L., 1981, Expression of the major histocompatibility antigens in the human nervous system, in: Monoclonal Antibodies against Neural Antigens (R. McKay, M. Raff, and L. Reichardt, eds.), Cold Spring Harbor, pp. 69–71.Google Scholar
  53. Lampson, L., and Levy, R., 1979, A role for clonal antigens in cancer diagnosis and therapy, J. Natl.Cancer Inst. 62:217–219.Google Scholar
  54. Lampson, L., and Levy, R., 1980, Two populations of la-like molecules on a human B cell line, J. Immunol. 25:293–299.Google Scholar
  55. Lampson, L., and Whelan, J., 1983, Paucity of HLA-A,B,C molecules on human cells of neuronal origin: Microscopic analysis of neuroblastoma cell lines and tumor, Ann. N.Y. Acad. Sci. 420:107–114.CrossRefGoogle Scholar
  56. Lampson, L., Levy, R., Grumet, F., Ness, D., and Pious, D., 1978a, Production in vitro of murine antibody to a human histocompatibility alloantigen, Nature 271:461–462.CrossRefGoogle Scholar
  57. Lampson, L., Royston, I., and Levy, R., 1978b, Homogeneous antibodies directed against human cell surface antigens: I. The mouse spleen fragment culture response to T and B cell lines derived from the same individual, J. Supramol. Struct. 6:441–448.CrossRefGoogle Scholar
  58. Lampson, L., Fisher, C., and Whelan, J., 1983, Striking paucity of HLA-A,B,C and ß2-microglobulin on human neuroblastoma cell lines, J. Immunol. 130:2471–1278.Google Scholar
  59. Larhammar, D., Gustafsson, K., Claesson, L., Bill, P., Wiman, K., Schenning, L., Sundelin, J., Widmark, E., Peterson, P. A., and Rask, L., 1982, Alpha chain of HLA-DR transplantation antigens is a member of the same protein superfamily as the immunoglobulins, Cell 30:153–161.CrossRefGoogle Scholar
  60. Law, H. Y., and Bodmer, W. F., 1978, Use of microimmunization and microagglutination assays for attempted detection of HLA antigens and β2-microglobulin on human sperm, Tissue Antigens 12:249.CrossRefGoogle Scholar
  61. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283:249–256.CrossRefGoogle Scholar
  62. Littauer, U., Giovanni, M., and Glick, M., 1980, A glycoprotein from neurites of differentiated neuroblastoma cells, J. Biol. Chem. 255:5448–5453.Google Scholar
  63. Malissen, M., Malissen, B., and Jordan, B., 1982, Exon/intron organization and complete nucleotide sequence of an HLA gene, Proc. Natl. Acad. Sci. USA 79:893–897.CrossRefGoogle Scholar
  64. Marangos, P., Polak, J., and Pearse, A., 1982, Neuron-specific enolase. A probe for neurons and neuroendocrine cells, TINS Trends Neurosci. 1982 (June):193–196.CrossRefGoogle Scholar
  65. Miller, R., Maloney, D., Warnke, R., and Levy, R., 1982, Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody, New Engl. J. Med. 306:517–522.CrossRefGoogle Scholar
  66. Minna, J., 1978, Summary of cloning of differentiated function using hybrid cells and comparison of the mouse and human gene maps for homologous markers, Curr. Top. Microbiol. Immunol. 81:235–240.Google Scholar
  67. Moore, B., 1975, Membrane proteins in the nervous system, in: The Nervous System (D. Tower, ed.), Volume I: The Basic Neurosciences, Raven Press, New York, pp. 503–514.Google Scholar
  68. Ohno, S., 1977, The original function of MHC antigens as the general plasma membrane anchorage site of organogenesis-directing proteins, Immunol. Rev. 33:59–69.CrossRefGoogle Scholar
  69. Parham, P., and Bodmer, W., 1978, Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2, Nature 276:397–398.CrossRefGoogle Scholar
  70. Pouyssegur, J., Jacques, Y., and Lazdunski, M., 1980, Identification of a tetrodotoxin-sensitive Na+ channel in a variety of fibroblast lines, Nature 286:162–164.CrossRefGoogle Scholar
  71. Pruss, R., Mirsky, R., Raff, M., Thorpe, R., Dowding, A., and Anderton, B., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27:419–428.CrossRefGoogle Scholar
  72. Ramaekers, F., Puts, J., Kant, A., Moesker, O., Jap, P., and Vooijs, G., 1982, Use of antibodies to intermediate filaments in the characterization of human tumors, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume KLVI: Organization of the Cytoplasm, Cold Spring Harbor, New York, 1982, pp. 331–339.Google Scholar
  73. Schachner, M., and Sidman, R., 1973, Distribution of H-2 alloantigen in adult and developing mouse brain, Brain Res. 60:191.CrossRefGoogle Scholar
  74. Schlesinger, H., Gerson, J., Moorhead, P., Maguire, H., and Hummeler, K., 1976, Establishment and characterization of human neuroblastoma cell lines, Cancer Res. 36:3094.Google Scholar
  75. Seeger, R., Danon, Y., Rayner, S., and Hoover, F., 1982, Definition of a thy-1 determinant on human neuroblastoma, glioma, sarcoma, and teratoma cells with a monoclonal antibody, J. Immunol. 128:983.Google Scholar
  76. Springer, T., 1980, Cell-surface differentiation in the mouse. Characterization of “Jumping” and “Lineage” antigens using xenogeneic rat monoclonal antibodies, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 185–217.Google Scholar
  77. Stallcup, W., Levine, J., and Raschke, W., 1981, Monoclonal antibody to the NG2 marker, in: Monoclonal Antibodies to Neural Antigens (R. McKay, M. Raff, and L. Reichardt, eds.), Cold Spring Harbor, New York, pp. 39–49.Google Scholar
  78. Sterling, P., 1983, Microcircuitry of the cat retina, Annu. Rev. Neurosci. 6:149–185.CrossRefGoogle Scholar
  79. Sternberger, L., 1979, Immunocytochemistry, 2nd ed., Wiley, New York.Google Scholar
  80. Sternberger, L., Harwell, L., and Sternberger, N., 1982, Neurotypy: Regional individuality in rat brain detected by immunocytochemistry with monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79:1326–1330.CrossRefGoogle Scholar
  81. Sunderland, C., Redman, C., and Stirrat, G., 1981, HLA-A,B,C antigens are expressed on nonvillous trophoblast of the early human placenta, J. Immunol. 127:2614–2615.Google Scholar
  82. Ting, T., Shigekawa, B., Linthicum, D., Werner, L., and Frelinger, J., 1981, Expression and synthesis of murine immune response-associated (Ia) antigens by brain cells, Proc. Natl. Acad. Sci. USA 78:3170–3174.CrossRefGoogle Scholar
  83. Tischler, A., Dichter, M., Biales, B., and Greene, L., 1977, Neuroendocrine neoplasms and their cells of origin, New Engl. J. Med. 296:919–925.CrossRefGoogle Scholar
  84. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350–4354.CrossRefGoogle Scholar
  85. Trisler, G., Donlon, M., Shain, W., and Coon, H., 1979, Recognition of antigenic differences among neurons using antiserums to clonal neural retina hybrid cells, Fed. Proc. 38:2368–2374.Google Scholar
  86. Trisler, G., Schneider, M., and Nirenberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position, Proc. Natl. Acad. Sci. USA 78:2145–2149.CrossRefGoogle Scholar
  87. Trowsdale, J., Travers, P., Bodmer, W. F., and Patillo, R. A., 1980, Expression of HLA-A, -B and -C and β2-microglobulin antigens in human choriocarcinoma cell lines, J. Exp. Med. 152:11s–17s.Google Scholar
  88. Von Willebrand, E., Parthenais, E., and Hayry, P., 1980, Expression of the major AgB histocompatibility complex antigens on different structural components of rat kidney and heart, Cell. Immunol. 52:313–324.CrossRefGoogle Scholar
  89. Vulliamy, T., Rattray, S., and Mirsky, R., 1981, Cell-surface antigen distinguishes sensory and autonomic peripheral neurones from central neurones, Nature 291:418–420.CrossRefGoogle Scholar
  90. West, G., Uki, J., Herschman, H., and Seeger, R., 1977, Adrenergic, cholinergic, and inactive human neuroblastoma cell lines with the action-potential Na+ ionophore, J. Cancer Res. 37:1372–1376.Google Scholar
  91. Williams, A. F., and Gagnon, J., 1982, Neuronal cell Thy-1 glycoprotein: Homology with immunoglobulin, Science 216:696–703.CrossRefGoogle Scholar
  92. Williams, K., Hart, D., Fabre, J., and Morris, P., 1980, Distribution and quantitation of HLA-ABC and DR(Ia) antigens on human kidney and other tissues, Transplantation 29:274.CrossRefGoogle Scholar
  93. Ziegler, A., and Milstein, C., 1979, A small polypeptide different from b2-microglobulin associated with a human cell surface antigen, Nature 279:243–244.CrossRefGoogle Scholar
  94. Zipser, B., and McKay, R., 1981, Monoclonal antibodies distinguish identifiable neurones in the leech, Nature 289:549–554.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lois Alterman Lampson
    • 1
  1. 1.Department of AnatomyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations