Monoclonal Antibodies to Cytoskeletal Proteins

  • J. J. C. Lin
  • J. R. Feramisco
  • S. H. Blose
  • F. Matsumura


Cytoskeletal proteins are found, as a general rule, in highly organized arrays within the cytoplasm of higher eukaryotic cells. The three filamentous networks that comprise the cytoskeleton are the microfilaments, composed of actin and many accessory proteins; the microtubules, composed of tubulin and several accessory proteins; and the intermediate filaments, composed of vimentin (or one of four other related proteins) and at least two accessory proteins. These networks have been the objects of intense study over the past 10 years in terms of cell motility, structure, and adhesion, and have proven to be most amenable to immunofluorescence and immunoelectron microscopic examination [e.g., R. Goldman et al., 1976)]. Because of the numerous applications of immunological techniques to investigate the structure and function of the cellular cytoskeleton systems, it is easily understood why many researchers in the field have begun utilizing the lymphocyte hybridoma method (Kohler and Milstein, 1975) as a source of antibodies. Studying something as complex as the cytoskeleton requires the use of the purest immunological reagents available, i.e., monoclonal antibodies.


Monoclonal Antibody Tannic Acid Cold Spring Harbor Intermediate Filament Cytoskeletal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antman, K. H., and Livingston, D. M., 1980, Intracellular neutralization of SV40 tumor antigens following microinjection of specific antibody, Cell 19:627–635.CrossRefGoogle Scholar
  2. Atherton, B. T., and Hynes, R. O., 1981, A difference between plasma and cellular fibronectins located with monoclonal antibodies, Cell 25:133–141.CrossRefGoogle Scholar
  3. Bader, D., Masaki, T., and Fischman, D. A., 1981, Myosin isoform transitions during chick myogenesis, J. Cell Biol. 91:352a.CrossRefGoogle Scholar
  4. Blose, S. H. and Meltzer, D. I., 1981, Visualization of the 10 nm filament-vimentin rings in vascular endothelial cells in situ: Close resemblance to vimentin cytoskeletons found in monolayers in vitro, Exp. Cell Res. 135:299–309.CrossRefGoogle Scholar
  5. Blose, S. H., Matsumura, F., and Lin, J. J. C., 1982, The structure of vimentin—10 nm filaments probed with a monoclonal antibody that recognizes a common antigenic determinant on vimentin and tropomyosin, Cold Spring Harbor Symp. Quant. Biol. 46:455–463.CrossRefGoogle Scholar
  6. Bonner, W. M., and Laskey, R. A., 1974, A film detection method for tritium-labelled proteins and nucleic acids in Polyacrylamide gels, Eur. J. Biochem. 46:83–88.CrossRefGoogle Scholar
  7. Burridge, K., 1978, Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels, in: Methods in Enzymology, Volume 50, Academic Press, New York, pp. 54–64.Google Scholar
  8. Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19:587–595.CrossRefGoogle Scholar
  9. Dellago, K., Brouet, J. C., Perreau, J., and Paulin, D., 1982, Human monoclonal IgM with autoantibody activity against intermediate filaments, Proc. Natl. Acad. Sci. USA 79:446–450.CrossRefGoogle Scholar
  10. Diacumakos, E. G., 1978, Methods for micromanipulation of human somatic cells in culture, Methods Cell Biol. 7:287–311.CrossRefGoogle Scholar
  11. Dulbecco, R., Unger, M., Bologna, M., Battifora, H., Syka, P., and Okada, S., 1981, Cross-reactivity between Thy-1 and a component of intermediate filaments demonstrated using a monoclonal antibody, Nature 292:772–774.CrossRefGoogle Scholar
  12. Dutton, A. H., Tokuyasu, K. T., and Singer, S. J., 1979, Iron-dextran antibody conjugates: General method for simultaneous staining of two components in high-resolution immunoelectron microscopy, Proc. Natl. Acad. Sci. USA 76:3392–3396.CrossRefGoogle Scholar
  13. Ey, P. L., Prowse, S. J., and Jenkin, C. R., 1978, Isolation of pure IgG1, IgG2a, and IgG2b immunoglobulins from mouse serum using protein A-sepharose, Immunochemistry 15:429–436.CrossRefGoogle Scholar
  14. Feramisco, J. R., and Blose, S. H., 1980, Distribution of fluorescently labeled alpha-actinin in living and fixed fibroblasts, J. Cell Biol. 86:608–615.CrossRefGoogle Scholar
  15. Garrels, J. I., 1979, Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines, J. Biol. Chem. 254:7961–7977.Google Scholar
  16. Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18:193–205.CrossRefGoogle Scholar
  17. Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino acid sequence analysis: Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78:4120–4123.CrossRefGoogle Scholar
  18. Goding, J. W., 1978, Use of staphylococcal protein A as an immunological reagent, J. Immunol. Methods 29: 241–253.CrossRefGoogle Scholar
  19. Goldman, R., Pollard, T., and Rosenbaum, J. (eds.), 1976, Cold Spring Harbor Conference on Cell Proliferation, Books A-C, Cold Spring Harbor, New York.Google Scholar
  20. Goldman, R. D., and Knipe, D. M., 1972, The functions of cytoplasmic fibers in non-muscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37:523–533.CrossRefGoogle Scholar
  21. Goldman, R. D., Chojnack, B., and Yerna, M.-J., 1979, Ultrastructure or microfilament bundles in baby hamster kidney (BHK-21) cells, J. Cell Biol. 80:759–766.CrossRefGoogle Scholar
  22. Gordon, W. E., and Blose, S. H., 1979, Double lable immunofluorescence studies of actin, myosin, tropomyosin, alpha-actinin, and filamin in a non-muscle cell type, J. Supramol. Struct. 10(Suppl.): 111.CrossRefGoogle Scholar
  23. Gordon, W. E., Bushnell, A., and Burridge, K., 1977, Characterization of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum, Cell 13:249–261.CrossRefGoogle Scholar
  24. Graessmann, A., Graessmann, M., and Mueller, C., 1980, Microinjection of early SV40 DNA fragments and T-antigen, in: Methods in Enzymology, Volume 65, Academic Press, New York, pp. 816–826.Google Scholar
  25. Gregoria, G., 1976, The carrier potential of liposomes in biology and medicine, N. Engl. J. Med. 295:704–710, 765–770.CrossRefGoogle Scholar
  26. Herrmann, S. H., and Mescher, M. F., 1979, Purification of the H-2Kk molecule of the murine major histocompatibility complex, J. Biol. Chem. 254:8713–8716.Google Scholar
  27. Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86:212–234.CrossRefGoogle Scholar
  28. Izant, J. G., and Mcintosh, J. R., 1980, Microtubule-associated proteins: A monoclonal antibody to MAP-2 binds to differentiated neurons, Proc. Natl. Acad. Sci. USA 77:4741–4745.CrossRefGoogle Scholar
  29. Kessler, S. W., 1975, Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A, J. Immunol. 115:1617–1624.Google Scholar
  30. Kishida, Y., Olsen, B. R., Berg, R. A., and Prockop, D. J., 1975, Two improved methods for preparing ferritin-protein conjugates for electron microscopy, J. Cell Biol. 64:331–339.CrossRefGoogle Scholar
  31. Klymkowsky, M. W., 1981, Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody, Nature 291:249–251.CrossRefGoogle Scholar
  32. Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.CrossRefGoogle Scholar
  33. Kurki, P., Linder, E., Virtanen, I., and Stenman, S., 1977, Human smooth muscle autoantibodies reacting with intermediate (100 Å) filaments, Nature 268:240–241.CrossRefGoogle Scholar
  34. Lane, D., and Koprowski, H., 1982, Molecular recognition and the future of monoclonal antibodies, Nature 296:200–202.CrossRefGoogle Scholar
  35. Lane, E. B., 1982, Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization, J. Cell Biol. 92:665–673.CrossRefGoogle Scholar
  36. Lazarides, E., 1975, Tropomyosin antibody: The specific localization of tropomyosin in nonmuscle cells, J. Cell Biol 65:549–561.CrossRefGoogle Scholar
  37. Lazarides, E., 1976, Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68:202–219.CrossRefGoogle Scholar
  38. Lazarides, E., and Burridge, K., 1975, Alpha-actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6:289–298.CrossRefGoogle Scholar
  39. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71:2268–2272.CrossRefGoogle Scholar
  40. Lin, J. J. C., 1981, Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells, Proc. Natl. Acad. Sci. USA 78:2335–2339.CrossRefGoogle Scholar
  41. Lin, J. J. C., 1982, Mapping structural proteins of cultured cells by monoclonal antibodies, Cold Spring Harbor Symp. Quant. Biol. 46:769–783.CrossRefGoogle Scholar
  42. Lin, J. J. C., and Feramisco, J. R., 1981, Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody, Cell 24:185–193.CrossRefGoogle Scholar
  43. Lin, J. J. C., and Queally, S. A., 1982, A monoclonal antibody that recognizes Golgi-associated protein of cultured fibroblast cells, J. Cell Biol. 92:108–112.CrossRefGoogle Scholar
  44. Lin, J. J. C., Burridge, K., Blose, S. H., Bushneil, A., Queally, S. A., and Feramisco, J. R., 1982, Use of monoclonal antibodies to study cytoskeleton, in: Cell and Muscle Motility, Volume 2 (R. M. Dowben and J. W. Shay, eds.), Plenum Press, New York, pp. 63–71.CrossRefGoogle Scholar
  45. Lwebuga-Mukasa, J. S., Lappi, S., and Taylor, P., 1976, Molecular forms of acetylcholinesterase from Torpedo californica: Their relationship to synaptic membranes, Biochemistry 15:1425–1434.CrossRefGoogle Scholar
  46. Mabuchi, F., and Okuno, M., 1977, The effect of myosin antibody on the division of starfish blastomeres, J. Cell Biol. 74:251–264.CrossRefGoogle Scholar
  47. Markham, R., Trey, S., and Hills, G. J., 1963, Methods for the enhancement of image detail and accentuation of structure in electron microscopy, Virology 20:88–102.CrossRefGoogle Scholar
  48. Matsumura, F., and Lin, J. J. C., 1982, Visualization of monoclonal antibody binding to tropomyosin on native smooth muscle thin filaments by electron microscopy, J. Mol. Biol. 157:163–171.CrossRefGoogle Scholar
  49. Medgyesi, G. A., Fust, G., Gergely, J., and Bazin, H., 1978, Classes and subclasses of rat immunoglobulins: Interaction with the complement system and with staphylococcal protein A., Immunochemistry 15:125–129.CrossRefGoogle Scholar
  50. Miller, D. M., Mackenzie, J. M., Bolton, L. H., and Epstein, H. F., 1981, Monoclonal antibodies to nematode myosin heavy chain isozymes, J. Cell Biol. 91:346a.CrossRefGoogle Scholar
  51. Mizuhira, V., and Futaesaku, Y., 1971, On the new approach of tannic acid and digitonine to the biological fixation, in: Procedings of the 29th Annual Meeting of the Electron Microscopy Society of America (G. W. Bailey, eds.), Claitor’s Publishing Division, Boston, pp. 494–495.Google Scholar
  52. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250:4007–4021.Google Scholar
  53. Osborn, M., Franke, W. W., and Weber, K., 1977, Visualization of a system of filaments 7–10 nm thick in cultured cells of an epithelioid line (PtK2) by immunofluorescence microscopy, Proc. Natl. Acad. Sci. USA 74:2490–2494.CrossRefGoogle Scholar
  54. Osborn, M., Geisler, N., Shaw, G., Sharp, G., and Weber, K., 1982, Intermediate filaments, Cold Spring Harbor Symp. Quant. Biol. 46:413–429.CrossRefGoogle Scholar
  55. Pepe, F. A., 1966, Some aspects of the structural organization of myofibril as revealed by antibody staining method, J. Cell Biol. 28:505–525.CrossRefGoogle Scholar
  56. Pepe, F. A., 1973, The myosin filament: Immunochemical and ultrastructural approaches to molecular organization, Cold Spring Harbor Symp. Quant. Biol. 37:97–108.CrossRefGoogle Scholar
  57. Pepe, F. A., 1975, Structure of muscle filaments from immunohistochemical and ultrastructural studies, J. Histochem. Cytochem. 23:543–562.CrossRefGoogle Scholar
  58. Porter, R. R., and Reid, K. B. M., 1978, The biochemistry of complement, Nature 275:699–704.CrossRefGoogle Scholar
  59. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. M., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27:419–428.CrossRefGoogle Scholar
  60. Reid, K. B. M., 1974, A collagen-like amino acid sequence in a polypeptide chain of human Clq (a subcomponent of the first component of complement), Biochem. J. 141:189–203.Google Scholar
  61. Reid, K. B. M., 1979, Complete amino acid sequences of the three collagen-like regions present in subcomponent Clq of the first component of human complement, Biochem. J. 179:367–371.Google Scholar
  62. Sarnow, P., Ho, Y. S., Williams, J., and Levine, A. J., 1982, Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells, Cell 28:387–394.CrossRefGoogle Scholar
  63. Schlaepfer, W. W., 1977, Immunological and ultrastructural studies of neurofilaments, J. Cell Biol 74:226–240.CrossRefGoogle Scholar
  64. Schlegel, R. A., and Rechsteiner, M. C., 1975, Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells, Cell 5:371–379.CrossRefGoogle Scholar
  65. Secher, D. S., and Burke, D. C., 1980, A monoclonal antibody for large-scale purification of human leukocyte interferon, Nature 285:446–450.CrossRefGoogle Scholar
  66. Simionescu, N., and Simionescu, M., 1976, Galloylglucoses of low molecular weight as mordant in electron microscopy, J. Cell Biol. 70:608–633.CrossRefGoogle Scholar
  67. Stacey, D. W., and Allfrey, V. G., 1977, Evidence for the autophagy of microinjected proteins in HeLa cells, J. Cell Biol. 75:807–817.CrossRefGoogle Scholar
  68. Sternberger, L. A., Hardy, R. H., Cuculis, J. J., and Meyer, H. G., 1970, The unlabeled antibody enzyme method of immunohistochemistry: Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes, J. Histochem. Cytochem. 18:315–333.CrossRefGoogle Scholar
  69. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350–4354.CrossRefGoogle Scholar
  70. Wang, E., and Goldman, R. D., 1978, Functions of the cytoplasmic fibers in intracellular movements in BHK21 cells, J. Cell Biol. 79:708–726.CrossRefGoogle Scholar
  71. Wang, E., Cross, R. K., and Choppin, R. W., 1979, Involvement of microtubules and 10 nm filaments in the movement and positioning of nuclei in syncytia, J. Cell Biol. 83:320–337.CrossRefGoogle Scholar
  72. Wang, K., Feramisco, J. R., and Ash, J. F., 1982, Fluorescent localization of contractile proteins in tissue culture cells, in: Methods in Enzymology, Volume 85, Academic Press, New York, pp. 514–562.Google Scholar
  73. Wehland, J., Willingham, M. C., Dickson, R., and Pastan, I., 1981, Microinjection of anticlathrin antibodies into fibroblasts does not interfere with the receptor-mediated endocytosis of alpha2-macroglobulin, Cell 25:105–119.CrossRefGoogle Scholar
  74. Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol. 89:198–205.CrossRefGoogle Scholar
  75. Willingham, M. C., and Yamada, S. S., 1979, Development of a new primary fixative for electron microscopic immunocytochemical localization of intracellular antigens in cultured cells, J. Histochem. Cytochem. 27:947–960.CrossRefGoogle Scholar
  76. Willingham, M. C., Spicer, S. S., and Graber, C. D., 1971, Immunocytologic labeling of calf and human lymphocyte surface antigens, Lab. Invest. 25:211–219.Google Scholar
  77. Willingham, M. C., Yamada, S. S., and Pastan, I., 1978, Ultrastructural antibody localization of alpha2-macroglobulin in membrane-limited vesicles in cultured cells, Proc. Natl. Acad. Sci. USA 75:4359–4363.CrossRefGoogle Scholar
  78. Willingham, M. C., Jay, G., and Pastan, I., 1979, Localization of the ASV src gene product to the plasma membrane of transformed cells by electron microscopic immunocytochemistry, Cell 18:125–134.CrossRefGoogle Scholar
  79. Yamaizumi, M., Uchida, T., Okada, Y., and Furusawa, M., 1978, Neutralization of diphtheria toxin in living ceils by microinjection of antifragment A contained within resealed erythrocyte ghosts, Cell 13:222–232.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. J. C. Lin
    • 1
  • J. R. Feramisco
    • 1
  • S. H. Blose
    • 1
  • F. Matsumura
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations