Adhesion-Related Integral Membrane Glycoproteins Identified by Monoclonal Antibodies

  • Alan F. Horwitz
  • Karen A. Knudsen
  • Caroline H. Damsky
  • Cindi Decker
  • Clayton A. Buck
  • Nicola T. Neff


The isolation of integral surface membrane molecules participating in adhesive phenomena is an important but elusive goal of developmental and cell biology. Adhesion-inhibiting polyclonal antibodies were first used by Gerisch (1977) to identify glycoproteins responsible for Dictyostelium aggregation. This immunological approach has been used subsequently by several groups for the study of cell-cell and cell-substratum adhesion in mammalian systems. In this paradigm, a broad-spectrum polyclonal antiserum is raised that interferes with the adhesion process. Relevant cell surface molecules are then detected and subsequently purified by monitoring their ability to block antibody-induced alterations in adhesion. This approach has resulted in the identification and isolation of membrane glycoproteins involved in adhesive phenomena in several systems (Thiery et al., 1977; Bertolotti et al., 1980; Edelman, 1983; Damsky et al., 1981, 1983; Knudsen et al., 1981; Kemler et al., 1977; Johnson et al., 1979; Ducibella, 1980; Takiechi et al., 1981; Hyafil et al., 1981). Although this approach has been fruitful, it has limitations. First, with a broad-spectrum serum that perturbs adhesion, it is not possible to use affinity chromatography to purify the antigen. Therefore purification schemes must be developed using an antiserum inhibition assay to monitor progress. Second, if more than one polypeptide is present in the purified blocking activity, the relation of each to adhesion must be established.


Sialic Acid Neural Cell Adhesion Molecule Myogenic Cell Embryonal Carcinoma Cell Immunoaffinity Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertolotti, R., Rutishauser, U., and Edelman, G. M., 1980, A cell surface molecule involved in aggregation of embryonic liver cells, Proc. Natl. Acad. Sci. USA 77:4831–4835.CrossRefGoogle Scholar
  2. Brackenbury, R., Thiery, J.-P., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell—cell binding, J. Biol. Chem. 252:6835–6840.Google Scholar
  3. Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1981, Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells, Proc. Natl. Acad. Sci. USA 78:387–391.CrossRefGoogle Scholar
  4. Chen, W.-T., 1982, Development of the attachment sites between the cell surface and the extracellular matrix in cultured fibroblasts, J. Cell Biol. 95:100a (abstract).CrossRefGoogle Scholar
  5. Chen, W.-T., and Singer, J., 1982, Immunoelectron microscopic studies of the sites of cell substratum and cell-cell contact in cultured fibroblasts. J. Cell Biol. 95:205–233.CrossRefGoogle Scholar
  6. Cohen, S. M., Gorbsky, G., and Steinberg, M., 1983, Immunochemical characterization of related families of glycoproteins in desmosomes, J. Biol. Chem. 34:455–466.Google Scholar
  7. Damsky, C. H., Knudsen, K. A., Dorio, R. J., and Buck, C. A., 1981, Manipulation of cell-cell and cell—substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera, J. Cell Biol. 89:173–184.CrossRefGoogle Scholar
  8. Damsky, C. H., Richa, J., Solter, D., Knudsen, K. A., and Buck, C. A., 1983, Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue, Cell 34:455–466.CrossRefGoogle Scholar
  9. Decker, C., and Horwitz, A. F., 1982, Adhesive and morphologic hierarchies determined using a monoclonal antibody, J. Cell Biol. 95:111a (abstract).Google Scholar
  10. Ducibella, T., 1980, Divalent antibodies to mouse embryonal carcinoma cells inhibit compaction in the mouse embryo, Dev. Biol. 79:356–366.CrossRefGoogle Scholar
  11. Edelman, G. M., 1983, Cell adhesion molecules, Science 219:450–457.CrossRefGoogle Scholar
  12. Edelman, G. M., and Chuong, C.-M., 1982, Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice, Proc. Natl. Acad. Sci. USA 79:7036–7040.CrossRefGoogle Scholar
  13. Gallin, W. J., Edelman, G. M., and Cunningham, B. A., 1983, Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells, Proc. Natl. Acad. Sci. USA 80:1083–1042.CrossRefGoogle Scholar
  14. Geiger, B., 1981, Involvement of vinculin in contact-induced cytoskeletal interactions, Cold Spring Harbor Symp. Quant. Biol. XLVI:671–682.Google Scholar
  15. Gerisch, G., 1977, Univalent antibody fragments as tools for the analysis of cell interactions in Dictyostelium, Curr. Top. Dev. Biol. 14:243–270.CrossRefGoogle Scholar
  16. Greve, J. M., and Gottlieb, D. I., 1982, Monoclonal antibodies which alter the morphology of cultured chick myogenic cells, J. Cell Biochem. 18:221–230.CrossRefGoogle Scholar
  17. Harper, P. A., and Juliano, R. L., 1980, Isolation and characterization of Chinese hamster ovary cell variants defective in adhesion to fibronectin coated collagen, J. Cell Biol. 87:755–763.CrossRefGoogle Scholar
  18. Harper, P. A., and Juliano, R. L., 1981, Fibronectin independent adhesion of fibroblasts to the extracellular matrix: Mediation by a high molecular weight membrane glycoprotein, J. Cell Biol. 91:647–653.CrossRefGoogle Scholar
  19. Heath, J. P., and Dunn, G. A., 1978, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflection and high-voltage electron microscope study, J. Cell Sci. 29:197–212.Google Scholar
  20. Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, R A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes, J. Biol. Chem. 257:7720–7729.Google Scholar
  21. Horwitz, A., Neff, N., Sessions, A., and Decker, C., 1982, Cellular interactions in myogenesis, in: Muscle Development: Molecular and Cellular Control (H. Epstein and M. Pearson, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 291–300.Google Scholar
  22. Hyafil, F., Babinet, C., and Jacob, F., 1981, Cell-cell interaction in early embryogenesis: A molecular approach to the role of calcium, Cell 26:447–454.CrossRefGoogle Scholar
  23. Hynes, R. O., 1981, Relationships between fibronectin and the cytoskeleton, in: Cytoskeletal Elements and Plasma Membrane Organization (G. Poste and G. L. Nicolson, eds.), Elsevier/North-Holland Biomedical Press, pp. 100–137.Google Scholar
  24. Izzard, C., and Lochner, L. R., 1976, Cell to substrate contacts in lung fibroblasts. An interference reflection study with an evaluation of the technique, J. Cell Sci. 21:129–159.Google Scholar
  25. Johnson, M. H., Chakraborty, J., Handyside, A. H., Willison, K., and Stern, P., 1979, Effect of prolonged decompaction on one development of the preimplantation mouse embryo, J. Embryol. Exp. Morphol. 54:241–261.Google Scholar
  26. Kemler, R., Babinet, C., Eisen, H., and Jacob, F., 1977, Surface antigens in early differentiation, Proc. Natl. Acad. Sci. USA 74:4449–4452.CrossRefGoogle Scholar
  27. Knudsen, K. A., Rao, P. E., Damsky, C. H., and Buck, C. A., 1981, Membrane glycoproteins involved in cell substratum adhesion, Proc. Natl. Acad. Sci. USA 78:6071–6075.CrossRefGoogle Scholar
  28. Knudsen, K. A., Buck, C. A., Damsky, C. H., and Horwitz, A. F., 1982, Adhesion-related glycoproteins isolated using a monoclonal antibody, J. Cell Biol. 95:111a. (abstract).Google Scholar
  29. Kohler, G., and Milstein, G., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.CrossRefGoogle Scholar
  30. McClay, D. R., Wessel, G. M., and Marchase, R. B., 1980, Intercellular recognition: Quantitation of initial binding events, Proc. Natl. Acad. Sci. USA 78:4975–4979.CrossRefGoogle Scholar
  31. Neff, N. T., Lowrey, C., Decker, C., Tovar, A., Damsky, C., Buck, C., and Horwitz, A. F., 1982, A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices, J. Cell Biol. 95:654–666.CrossRefGoogle Scholar
  32. Oesch, B., and Birchmeier, W., 1982, New surface components of fibroblast’s focal contacts identified by a monoclonal antibody, Cell 31:671–679.CrossRefGoogle Scholar
  33. Rorschneider, L., Rosok, M., and Shriver, K., 1981, Mechanism of transformation by Rous sarcoma virus. Events within adhesion plaques, Cold Spring Harbor Symp. Quant. Biol. 56:953–967.Google Scholar
  34. Rothbard, J. B., Brackenbury, R., Cunningham, B., and Edelman, G. M., 1982, Differences in the carbohydrate structure of neural cell adhesion molecule from adult and embryonic chicken brain, J. Biol. Chem. 257:11064–11069.Google Scholar
  35. Scott, R. E., 1976, Plasma membrane vesiculation: A new technique for isolation of plasma membranes, Science 194:743–745.CrossRefGoogle Scholar
  36. Takeichi, M., Atsumi, J., Yoshida, K. U., and Okada, T. S., 1981, Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites, Dev. Biol. 87:340–350.CrossRefGoogle Scholar
  37. Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina, J. Biol. Chem. 252:6841–6845.Google Scholar
  38. Vollmers, H. P., and Birchmeier, W., 1983, Monoclonal antibodies inhibit the adhesion of mouse B 16 melanoma cells in vitro and block lung metastases in vivo, Proc. Natl. Acad. Sci. USA 80:3729–3733.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Alan F. Horwitz
    • 1
  • Karen A. Knudsen
    • 2
  • Caroline H. Damsky
    • 2
  • Cindi Decker
    • 1
  • Clayton A. Buck
    • 2
  • Nicola T. Neff
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA

Personalised recommendations