Monoclonal Antibodies Directed to Cell-Surface Carbohydrates

  • Sen-Itiroh Hakomori


Cell surface carbohydrates in glycolipids and glycoproteins represent a large variety of antigens (for reviews, see Marcus and Schwarting, 1976; Watkins, 1980; Hakomori, 1981a; Marcus et al., 1981). Typical glycosphingolipid antigens are listed in Table I. Some carbohydrate sequences in glycolipids are also found in the peripheral region of side-chain carbohydrates in glycoproteins (Tonegawa and Hakomori, 1977; Fukuda et al., 1979; Järnefelt et al., 1978), while others are highly characteristic for glycolipids. However, carbohydrate antigens exclusively present in glycoproteins are not known. Furthermore, carbohydrate antigens in glycoproteins are poorly immunogenic. Therefore, only glycolipid antigens and their monoclonal antibodies will be discussed in this chapter. Cell surface glycolipids have also been implicated as regulators of cell proliferation, as mediators of cell-cell interactions (for a review, see Hakomori, 1981b), and as receptors for certain bioactive factors (Fishman and Brady, 1976). Therefore, antibodies to glycolipids are also useful in studying the function of glycolipids in membranes.


Blood Group Human Erythrocyte Blood Group Antigen Cold Agglutinin Glycolipid Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K., McKibbin, J. M., and Hakomori, S., 1983, The monoclonal antibody directed to difucosylated type 2 chain (Fucα1→2Galβ1→4[Fucα1→3]GlcNAcβ1→R; Y determinant), J. Biol Chem. 258:11793–11797.Google Scholar
  2. Abe, K., Levery, S. B., and Hakomori, S., 1984, The antibody specific to type 1 chain blood group A determinant, J. Immunol., April 1984 (in press).Google Scholar
  3. Alving, C. R., Joseph, K. C., and Wistar, R., 1974, Influence of membrane composition on the interaction of a human monoclonal “anti-Forssman” immunoglobulin with liposomes, Biochemistry 13:4818–4824.CrossRefGoogle Scholar
  4. Andrews, R. G., Torok-Storb, B., and Bernstein, I. D., 1983, Myeloid associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies, Blood 62:124–132.Google Scholar
  5. Anger, B. R., Lloyd, K. O., Oettgen, H. F., and Old, L. J., 1982, Mouse monoclonal IgM antibody against human lung cancer line SK-LC-3 with specificity for H(O) blood-group antigen, Hybridoma 1:139–147.CrossRefGoogle Scholar
  6. Ashall, F., Bramwell, M. E., and Harris, M., 1982, A new marker for human cancer cells. 1. The Ca antigen and the Cal antibody, Lancet 1982(July 3):1–6.CrossRefGoogle Scholar
  7. Bergsagel, D. E., 1977, Macroglobulinemia, in: Hematology (W. S. Williams, E. Beatler, A. J. Erslev, and R. W. Rundles, eds.), McGraw-Hill, New York, pp. 1126–1134.Google Scholar
  8. Bernstein, I., Tarn, M., and Nowinski, R. C., 1980, Mouse leukemia: Therapy with monoclonal antibodies against a thymus differentiation antigen, Science 207:68–71.CrossRefGoogle Scholar
  9. Bramwell, M. E., Bhavanandan, V. P., Wiseman, G., and Harris, H., 1983, Structure and function of the Ca antigen, Brit J. Cancer 48:177–183.CrossRefGoogle Scholar
  10. Brockhaus, M., Magnani, J. L., Blaszczyk, M., Steplewski, Z., Koprowski, H., Karlsson, K.-A., Larson, G., and Ginsburg, V., 1981, Monoclonal antibodies directed against the human Leb blood group antigen, J. Biol Chem. 256:13223–13225.Google Scholar
  11. Brockhaus, M., Magnani, J. L., Herlyn, M., Blaszczyk, M., Steplewski, Z., Koprowski, H., and Ginsburg, V., 1982, Monoclonal antibodies directed against the sugar sequence of lacto-N-fucopentaose III are obtained from mice immunized with human tumors, Arch. Biochem. Biophys. 217:647–651.CrossRefGoogle Scholar
  12. Brown, A., Feizi, T., Gooi, H. C., Embleton, M. J., Picard, J. K., and Baldwin, R. W., 1983, A monoclonal antibody against human colonic adenocarcinoma recognizes difucosylated type 2 blood group chain, Biosci. Rep. 3:163–170.CrossRefGoogle Scholar
  13. Brunngraber, E. G., 1979, Neurochemistry of Aminosugars, Thomas, Springfield, Illinois.Google Scholar
  14. Cahan, L. D., Irie, R. I., Singh, R., Cassidenti, A., and Paulsen, J. C., 1982, Identification of human neuroectodermal tumor antigen (IA-I-2) as ganglioside GD2, Proc. Natl. Acad. Sci. USA 79:7629–7633.CrossRefGoogle Scholar
  15. Civin, C. I., Mirro, J., and Banquerigo, M. L., 1981, My-1, A new myeloid-specific antigen identified by a mouse monoclonal antibody, Blood 57:842–845.Google Scholar
  16. Cuttitta, F., Rosen, S., Gazdar, A. F., and Minna, J. D., 1981, Monoclonal antibodies that demonstrate specificity for several types of human lung cancer, Proc. Natl. Acad. Sci. USA 78:4591–4595.CrossRefGoogle Scholar
  17. Dippold, W. G., Lloyd, K. O., Li, L. T. C., Ikeda, H., Oettgen, H. F., and Old, L. J., 1980, Cell surface antigens of human malignant melanoma: Definition of six antigenic systems with mouse monoclonal antibodies, Proc. Natl. Acad. Sci. USA 77:6114–6118.CrossRefGoogle Scholar
  18. Ehrlich, P., (1910) 1956, A general review of the recent work in immunity, in: Collected Papers of Paul Ehrlich, Vol. 2, Immunology and Cancer Research, London, Pergamon Press, pp. 442–447.Google Scholar
  19. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M., 1979, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. USA 76:4913–4917.CrossRefGoogle Scholar
  20. Feizi, T., 1981, Blood group Ii system: A carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man, Immunol. Commun. 10:127–156.Google Scholar
  21. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971a, Immunochemical studies on blood groups. XLVII. The I antigen complex precursors in A, B, H, Lea, and Leb blood group system, J. Exp. Med. 133:39–52.CrossRefGoogle Scholar
  22. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971b, Immunochemical studies on blood groups. XLIX. The I antigen complex: Specificity differences among anti-I sera revealed by quantitative precipitin studies, J. Immunol. 106:1578–1592.Google Scholar
  23. Feizi, T., Childs, R. A., Watanabe, K., and Hakomori, S., 1979, Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid, J. Exp. Med. 149:975–980.CrossRefGoogle Scholar
  24. Fishman, P. H., and Brady, R. O., 1976, Biosynthesis and function of gangliosides, Science 194:906–915.CrossRefGoogle Scholar
  25. Fredman, P., Richer, N. D., Magnani, J. L., Willingham, M. C., Pastan, I., and Ginsburg, V., 1983, A monoclonal antibody that precipitates the glycoprotein receptor for epidermal growth factor is directed against the human blood group H type 1 antigen, J. Biol. Chem. 258:11206–11210.Google Scholar
  26. Fukuda, M. N., Fukuda, M., and Hakomori, S., 1979, Cell surface modification by endo-β-galactosidase. Change of blood group activities and release of oligosaccharides from glycoproteins and sphingoglycolipids of human erythrocytes, J. Biol. Chem. 254:5458–5465.Google Scholar
  27. Fukushi, Y., Hakomori, S., Nudelman, E., and Cochran, N., 1984, Novel fucolipids accumulating in human adenocarcinoma. II. Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain, J. Biol. Chem., May 1984 (in press).Google Scholar
  28. Gilliland, D. G., Steplewski, Z., Collier, R. J., Mitchell, K. F., Chang, T. H., and Koprowski, H., 1980, Antibody-directed cytotoxic agents: Use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells, Proc. Natl. Acad. Sci. USA 77:4539–4543.CrossRefGoogle Scholar
  29. Goldstein, I. J., and Hayes, C. E., 1978, The lectins: Carbohydrate-binding proteins of plants and animals, Adv. Carbohydr. Chem. Biochem. 35:127–360.CrossRefGoogle Scholar
  30. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, J. M., 1981, Stage-specific embryonic antigen involves α1→3 fucosylated type 2 blood group chains, Nature 292:156–158.CrossRefGoogle Scholar
  31. Gooi, H. C., Thorpe, S. J., Hounsell, E. F., Rumpold, H., Kraft, D., Forster, O., and Feizi, T., 1983a, Marker of peripheral blood granulocytes and monocytes of man recognized by two monoclonal antibodies VEP8 and VEP9 involves the trisaccharide 3-fucosyl-N-acetyllactosamine, Eur. J. Immunol. 13:306–312.CrossRefGoogle Scholar
  32. Gooi, H. C., Williams, L. K., Uemura, K., Hounsell, E. F., McIlhinney, R. A. J., and Feizi, T., 1983b, A marker of human foetal endoderm defined by a monoclonal antibody involves type 1 blood group chain. Mol. Immunol. 20:607–613.CrossRefGoogle Scholar
  33. Hakomori, S., 1972, Preparation of antisera against glycolipids, in: Methods in Enzymology, Vol. 28 (V. Ginsburg, ed.), Academic Press, New York, pp. 232–236.Google Scholar
  34. Hakomori, S., 1981a, Blood group ABH and Ii antigens of human erythrocytes: Chemistry, polymorphism, and their developmental change, Semin. Hematol. 18:39–62.Google Scholar
  35. Hakomori, S., 1981b, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Annu. Rev. Biochem. 50:733–764.CrossRefGoogle Scholar
  36. Hakomori, S., and Andrews, H. D., 1970, Sphingoglycolipids with Leb activity and the co-presence of Lea and Leb glycolipids in human tumor tissue, Biochim. Biophys. Acta 202:225–228.Google Scholar
  37. Hakomori, S., and Kannagi, R., 1983, Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71:231–251.Google Scholar
  38. Hakomori, S., and Kijimoto, S., 1972, Forssman reactivity and cell contacts in cultured hamster cells, Nature 239:87–88.CrossRefGoogle Scholar
  39. Hakomori, S., and Young, W. W., Jr., 1978, Tumor associated glycolipid antigens and modified blood group antigens, Scand. J. Immunol. 7:7–117.CrossRefGoogle Scholar
  40. Hakomori, S., Teather, C., and Andrews, H. D., 1968, Organizational difference of cell surface hematoside in normal and virally transformed cells, Biochem. Biophys. Res. Commun. 33:563–568.CrossRefGoogle Scholar
  41. Hakomori, S., Nudelman, E., Levery, S., Solter, D., and Knowles, B. B., 1981, The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adenocarcinoma: A preliminary note, Biochem. Biophys. Res. Commun. 100(4): 1578–1586.CrossRefGoogle Scholar
  42. Hakomori, S., Nudelman, E., Kannagi, R., and Levery, S. B., 1982, The common structure in fucosyllactosaminolipids accumulating in human adenocarcinomas, and its possible absence in normal tissue, Biochem. Biophys. Res. Commun. 109:36–44.CrossRefGoogle Scholar
  43. Hakomori, S., Nudelman, E., Levery, S. B., and Patterson, C. M., 1983a, Cancer-associated gangliosides defined by a monoclonal antibody (IB9) directed to sialosylα2→6galactosyl residue: A preliminary note, Biochem. Biophys. Res. Commun. 113:791–798.CrossRefGoogle Scholar
  44. Hakomori, S., Patterson, C. M., Nudelman, E., and Sekiguchi, K., 1983b, A monoclonal antibody directed to N-acetyl-neuroaminosylα→6galactosyl residue in gangliosides and glycoproteins, J. Biol. Chem. May 1984 (in press).Google Scholar
  45. Hirszfeld, L., Halber, W., and Laskowski, J., 1929, Untersuchungen uber die serologischen Eigenschaften der gewebe. II. Uber serologische Eigenschaften der Neubildungen, Z. Immunitatsforsch. 64:81–113.Google Scholar
  46. Holm, M., Månsson, J.-E., Vanier, M.-T., and Svennerholm, L., 1972, Gangliosides of human, bovine, and rabbit retina, Biochim. Biophys. Acta 280:356–364.Google Scholar
  47. Huang, L. C., Brockhaus, M., Magnani, J. L., Cuttitta, F., Rosen, S., Minna, J. D., and Ginsburg, V., 1983a, Many monoclonal antibodies with an apparent specificity for certain lung cancers are directed against a sugar sequence found in lacto-N-fucopentaose III, Arch. Biochem. Biophys. 220:318–320.CrossRefGoogle Scholar
  48. Huang, L. C., Civin, C. I., Magnani, J. L., Shaper, J. H., and Ginsburg, V., 1983b, My-1, the human myeloid-specific antigen detected by mouse monoclonal antibodies, is a sugar sequence found in laeto-N-fucopentaose III, Blood 61:1020–1023.Google Scholar
  49. Irie, R. F., Sze, L. L., and Saxton, R. E., 1982, Human antibody to OFA-I, a tumor antigen, produced in vitro by Epstein-Barr virus-transformed human β-lymphoid cell lines, Proc. Natl. Acad. Sci. USA 79:5666–5670.CrossRefGoogle Scholar
  50. Järnefelt, F., Finne, J., Krusius, T., and Rauvala, H., 1978, Protein-bound oligosaccharides of cell membranes, Trends Biochem. Sci. 3:110–114.CrossRefGoogle Scholar
  51. Joseph, K. C., Alving, C. R., and Wistar, R., 1974, Forssman-containing liposomes: Complement-dependent damage due to interaction with a monoclonal IgM, J. Immunol. 112:1949–1951.Google Scholar
  52. Kabat, E. A., Liao, J., Shyong, J., and Osserman, E. F., 1982, A monoclonal IgM macroglobulin with specificity for lacto-N-tetraose in a patient with bronchogenic carcinoma, J. Immunol. 128:540–544.Google Scholar
  53. Kannagi, R., Nudelman, E., and Hakomori, S., 1982a, The possible role of ceramide in defining the structure and function of membrane glycolipids, Proc. Natl. Acad. Sci. USA 79:3470–3474.CrossRefGoogle Scholar
  54. Kannagi, R., Nudelman, E., Levery, S. B., and Hakomori, S., 1982b, A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1, J. Biol. Chem. 257:14865–14874.Google Scholar
  55. Kannagi, R., Levery, S. B., Ishigami, F., Hakomori, S., Shevinsky, L. H., Knowles, B. B., and Solter, D., 1983a, New globo-series glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, SSEA-3, J. Biol. Chem. 258:8934–8942.Google Scholar
  56. Kannagi, R., Stroup, R., Cochran, N. A., Urdal, D. L., Young, W. W., Jr., and Hakomori, S., 1983b, Factors affecting expression of glycolipid tumor antigens: Influence of ceramide composition and coexisting glycolipids on the antigenicity of gangliotriaosylceramide in murine lymphoma cells, Cancer Res. 43:4997–5005.Google Scholar
  57. Kannagi, R., Roelcke, D., Peterson, K. A., Okada, Y., Levery, S. B., and Hakomori, S., 1983c, Characterization of epitope structure in a developmentally regulated glycolipid antigen defined by a cold agglutinin F1: Recognition of α-sialosyl and α-L-fucosyl groups in a branched structure, Carbohydr. Res. 120:143–157.CrossRefGoogle Scholar
  58. Kannagi, R., Cochran, N. A., Ishigami, F., Hakomori, S., Andrews, P. W., Knowles, B. B., and Solter, D., 1983d, Monoclonal antibodies defining stage specific embryonic antigens (SSEA-3 and 4) recognize epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma, EMBOJ.2:2355–2361.Google Scholar
  59. Klein, G., Manneborg-Sandlund, A., Ehlin-Henriksson, B., Godal, T., Wiels, J., and Tursz, T., 1983, Expression of the BLA antigen, defined by the monoclonal 38.13 antibody, on Burkitt lymphoma lines, lymphoblastoid cell lines, their hybrids and other B-cell lymphomas and leukemias, Int. J. Cancer 31:535–542.CrossRefGoogle Scholar
  60. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.CrossRefGoogle Scholar
  61. Köhler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6:511.CrossRefGoogle Scholar
  62. Koprowski, H., Steplewski, Z., Mitchell, K., Herlyn, M., Herlyn, D., and Fuhrer, P., 1979, Colorectal carcinoma antigens detected by hybridoma antibodies, Somat. Cell Genet. 5:957–972.CrossRefGoogle Scholar
  63. Koprowski, H., Herlyn, M., Steplewski, Z., and Sears, H. F., 1981, Specific antigen in serum of patients with colon carcinoma, Science 212:53–54.CrossRefGoogle Scholar
  64. Koscielak, J., Hakomori, S., and Jeanloz, R. W., 1968, Glycolipid antigen and its antibody, Immunochemistry 5:441–455.CrossRefGoogle Scholar
  65. Kundu, S. K., Roelcke, D., and Marcus, D. M., 1982, Glycosphingolipid receptors for anti-Gd and anti-p cold agglutinin, Immunol. Lett. 4:263–268.CrossRefGoogle Scholar
  66. Laine, R. A., Yogeeswaran, G., and Hakomori, S., 1974, Glycosphingolipids covalently linked to agarose gel on glass beads, J. Biol. Chem. 249:4460–4466.Google Scholar
  67. Lingwood, C., and Hakomori, S., 1977, Selective inhibition of cell growth and associated changes in glycolipid metabolism induced by monovalent antibody to glycolipids, Exp. Cell Res. 108: 385–391.CrossRefGoogle Scholar
  68. Lingwood, C. A., Ng, A., and Hakomori, S., 1978, Monovalent antibodies directed to transformation-sensitive membrane components inhibit the process of oncogenic transformation, Proc. Natl. Acad. Sci. USA 75:6049–6053.CrossRefGoogle Scholar
  69. Lloyd, K. O., Larson, G., Strömberg, N., Thurin, J., and Karlsson, K.-A., 1983, Mouse monoclonal antibody F-3 recognized difucosyl type 2 blood group structure, Immunogenetics 17:537–541.CrossRefGoogle Scholar
  70. Magnani, J. L., Brockhaus, M., Smith, D. F., Ginsburg, V., Blaszczyk, M., Mitchell, K. F., Steplewski, Z., and Koprowski, H., 1981, A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma, Science 212:55–56.CrossRefGoogle Scholar
  71. Magnani, J., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., and Ginsburg, V., 1982, The antigen of a tumor-specific monoclonal antibody is a ganglioside containing sialyated lacto-N-fucopentaose II, Fed. Proc. 41:898.Google Scholar
  72. Mandai, C., and Karush, F., 1981, Restrictions in IgM expression. III. Affinity analysis of monoclonal antilactose antibodies, J. Immunol. 127:1240–1244.Google Scholar
  73. Marcus, D. M., and Janis, R., 1970, Localization of glycosphingolipids in human tissues by immunofluorescence, J. Immunol. 104:1530–1539.Google Scholar
  74. Marcus, D. M., and Schwarting, G. A., 1976, Immunochemical properties of glycolipids and phospholipids, Adv. Immunol. 23:203–240.CrossRefGoogle Scholar
  75. Marcus, D. M., Kabat, E. A., and Rosenfield, R. E., 1963, The action of enzymes from Clostridium tertium on the I antigenic determinant of human erythrocytes, J. Exp. Med. 118:175–194.CrossRefGoogle Scholar
  76. Marcus, D. M., Naiki, M., and Kundu, S. K., 1976, Abnormalities in the glycosphingolipid content of human Pk and p erythrocytes, Proc. Natl. Acad. Sci. USA 73:3263–3267.CrossRefGoogle Scholar
  77. Marcus, D. M., Kundu, S. K., and Suzuki, A., 1981, The P blood group system: Recent progress in immunochemistry and genetics, Semin. Hematol. 18:63–71.Google Scholar
  78. Masuho, Y., and Hara, T., 1980, Target-cell cytotoxicity of a hybrid of Fab or immunoglobulin and A-chain of ricin, Gann 71:759–765.Google Scholar
  79. Nagai, Y., and Ohsawa, T., 1974, Production of high titer antisera against sialoglycosphingolipids and their characterization using sensitized liposome, Jpn. J. Exp. Med. 44:451–464.Google Scholar
  80. Naiki, M., and Marcus, D. M., 1977, Binding of N-acetylgalactosamine-containing compounds by a human IgM paraprotein, J. Immunol. 119:537–539.Google Scholar
  81. Naiki, M., Marcus, D. M., and Ledeen, R. W., 1974, Properties of antisera to ganglioside GM1 and asialo GM1, J. Immunol. 113:84–93.Google Scholar
  82. Niemann, H., Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1978, Blood group i and I activities of “lacto-N-nor-hexaosylceramide” and its analogies: The structural requirements for i-specificities, Biochem. Biophys. Res. Commun. 81:1286–1293.CrossRefGoogle Scholar
  83. Nowinski, R., Berglund, C., Lane, J., Lostrom, M., Bernstein, I., Young, W., and Hakomori, S., 1980, Human monoclonal antibody against Forssman antigen, Science 210:537–539.CrossRefGoogle Scholar
  84. Nudelman, E., Hakomori, S., Knowles, B. B., Solter, D., Nowinski, R. C., Tarn, M. R., and Young, W. W., Jr., 1980, Monoclonal antibody directed to the stage-specific embryonic antigen (SSEA-1) reacts with a branched glycosphingolipid similar in structure to Ii antigen, Biochem. Biophys. Res. Commun. 97:443–451.CrossRefGoogle Scholar
  85. Nudelman, E., Hakomori, S., Kannagi, R., Levery, S., Yeh, M.-Y., Hellström, K. E., and Hellström, I., 1982, Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2, J. Biol. Chem. 257:12752–12756.Google Scholar
  86. Nudelman, E., Kannagi, R., Hakomori, S., Parsons, M., Lipinski, M., Wiels, J., Fellous, M., and Tursz, T., 1983, A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody, Science 220:509–511.CrossRefGoogle Scholar
  87. Prokop, O., and Uhlenbruck, G., 1965, Human Blood and Serum Groups, McClaren, London, pp. 302–305.Google Scholar
  88. Pukel, C. S., Lloyd, K. O., Trabassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J., 1982, GD3, a prominent ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibody, J. Exp. Med. 155:1133–1147.CrossRefGoogle Scholar
  89. Race, R. R., and Sanger, R., 1975, Blood Groups in Man, 6th ed., Scientific Publisher, Oxford, pp. 447–458.Google Scholar
  90. Rahman, A. F. B., and Longenecker, B. M., 1982, A monoclonal antibody specific for the Thomsen-Friedenreich cryptic T-antigen, J. Immunol. 129:2021–2024.Google Scholar
  91. Rapport, M. M., and Graf, L., 1961, Cancer antigens: How specific should they be?, Cancer Res. 21:1225–1237.Google Scholar
  92. Rapport, M. M., and Graf, L., 1969, Immunochemical reactions of lipids, Progr. Allergy 13:273–331.Google Scholar
  93. Raso, V., and Griffin, T., 1980, Specific cytotoxicity of a human immunoglobulin-directed Fab-ricin chain conjugate, J. Immunol. 125(6):2610–2616.Google Scholar
  94. Raso, V., Ritz, J., Basala, M., Schlossman, S. F., 1982, Monoclonal antibodyricin A chain conjugate selectively cytotoxic for cells bearing the common acute lymphoblastic leukemia antigen, Cancer Res. 42:457–464.Google Scholar
  95. Rauvala, H., 1976, Gangliosides of human kidney, J. Biol. Chem. 251:7517–7520.Google Scholar
  96. Richert, N. D., Willingham, M. C., and Pastan, I. H., 1983, Epidermal growth factor receptor: Characterization of a monoclonal antibody specific for the receptor of A431 cells, J. Biol Chem. 258:8902–8907.Google Scholar
  97. Roelcke, D., 1973, Specificity of IgA cold agglutinins: Anti Pr1, Eur. J. Immunol. 3:206–212.CrossRefGoogle Scholar
  98. Roelcke, D., 1974, Cold agglutination. Antibodies and antigens, Clin. Immunol. Immunopathol. 2:226–280.CrossRefGoogle Scholar
  99. Roelcke, D., 1981, A further cold agglutinin, F1, recognizing a N-acetylneuraminic acid-determined antigen, Vox Sang. 41:98–101.CrossRefGoogle Scholar
  100. Roelcke, D., Ebert, W., and Anstee, D. J., 1974, Demonstration of low-titer and anti-Pr cold agglutinins, Vox Sang. 27:429–441.CrossRefGoogle Scholar
  101. Roelcke, D., Riesen, W., Geisen, H. P., and Ebert, W., 1977, Serological identification of the new cold agglutinin specificity anti-Gd, Vox Sang. 33:304–306.CrossRefGoogle Scholar
  102. Roelcke, D., Pruzanski, W., Ebert, W., Romer, W., Fischer, R., Lenhard, V., and Rauterberg, E., 1980, A new human monoclonal cold agglutinin Sa recognizing terminal N-acetylneuraminyl groups on the cell surface, Blood 55:677–681.Google Scholar
  103. Rosenfelder, G., Young, W. W., Jr., and Hakomori, S., 1977, Association of the glycolipid pattern with antigenic alterations in mouse fibroblasts transformed by murine sarcoma virus, Cancer Res. 37:1333–1339.Google Scholar
  104. Sacks, S. H., and Lennox, E. S., 1981, Monoclonal anti-B as a new blood-typing reagent, Vox Sang. 40:99–104.CrossRefGoogle Scholar
  105. Shevinsky, L. H., Knowles, B. B., Damjanov, I., and Solter, D., 1982, A stage-specific embryonic antigen (SSEA-3) defined by monoclonal antibody to murine embryos, expressed on mouse embryos and on human teratocarcinoma cells, Cell 30:697–705.CrossRefGoogle Scholar
  106. Solter, D., and Knowles, B. B., 1978, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sci. USA 75:5565–5569.CrossRefGoogle Scholar
  107. Stern, P. L., Willison, K. R., Lennox, E., Galfre, G., Milstein, C., Secher, D., and Ziegler, A., 1978, Monoclonal antibodies as probes for differentiation and tumor-associated antigens: A Forssman specificity on teratocarcinoma stem cells, Cell 14:775–783.CrossRefGoogle Scholar
  108. Sundsmo, J., and Hakomori, S., 1976, Lacto-N-neotetraosylceramide (“Paragloboside”) as a possible tumor-associated surface antigen of hamster NILpy tumor, Biochem. Biophys. Res. Commun. 68:799–806.CrossRefGoogle Scholar
  109. Suzuki, A., and Yamakawa, T., 1981, The different distribution of asialo GM1 and Forssman antigen in the small intestine of mouse demonstrated by immunofluorescence staining, J. Biochem. 90:1541–1544.Google Scholar
  110. Symington, F. W., Bernstein, I. D., and Hakomori, S., 1984, Monoclonal antibody specific for lactosylceramide (LacCer), J. Biol. Chem., submitted.Google Scholar
  111. Tai, T., Paulson, J. C., Cahan, L. D., and Irie, R. F., 1983, Ganglioside GM2 as a human tumor antigen (OFA-I-1), Proc. Natl. Acad. Sci. USA 80:5392–5396.CrossRefGoogle Scholar
  112. Terashima, M., Kato, K., Osawa, T., Chiba, T., and Tejima, S., 1982, An antibody to lacto-N-biose I, Carbohydr. Res. 110:345–350.CrossRefGoogle Scholar
  113. Tonegawa, Y., and Hakomori, S., 1977, “Ganglioprotein and globoprotein”: The glycoproteins reacting with anti-ganglioside and anti-globoside antibodies and the ganglioprotein change associated with transformation, Biochem. Biophys. Res. Commun. 76:9–17.CrossRefGoogle Scholar
  114. Tsai, C.-M., Zopf, D. A., Yu, R. K., Wistar, R., Jr., and Ginsburg, V., 1977, A Waldenstrom macroglobulin that is both a cold agglutinin and a cryoglobulin because it binds N-acetylneuraminosyl residues, Proc. Natl. Acad. Sci. USA 74:4591–4594.CrossRefGoogle Scholar
  115. Urdal, D. L., and Hakomori, S., 1980, Tumor-associated ganglio-N-triaosylceramide, J. Biol. Chem. 255:10509–10516.Google Scholar
  116. Urdal, D. L., Kawase, I., and Henny, C. S., 1982, NK cells target interaction: Approach towards definition of recognition structure, Cancer Metastasis Rev. 1:65–81.CrossRefGoogle Scholar
  117. Urdal, D. L., Brentnall, T. A., Bernstein, I. D., and Hakomori, S., 1983, A granulocyte reactive monoclonal antibody, 1G10, identifies X determinant expressed in HL60 cells on both glycolipid and glycoprotein, Blood 62:1022–1026.Google Scholar
  118. Voak, D., Sacks, S., Alderson, T., Takei, F., Lennox, E., Jarvis, J., Milstein, C., and Darnborough, J., 1980, Monoclonal anti-A from a hybrid myeloma: Evaluation as a blood grouping reagent, Vox. Sang. 39:134–140.CrossRefGoogle Scholar
  119. Watanabe, K., Laine, R. A., and Hakomori, S., 1975, On neutral fucoglycolipids having long, branched carbohydrate chains: H-active and I-active glycosphingolipids of human erythrocyte membranes, Biochemistry 14:2725–2733.CrossRefGoogle Scholar
  120. Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1979, Characterization of a blood group I-active ganglioside. Structural requirements for I and i specificities, J. Biol. Chem. 254:3221–3228.Google Scholar
  121. Watkins, W. M., 1980, Biochemistry and genetics of the ABO, Lewis, and P blood group systems, in: Advances in Human Genetics, Vol. 10 (H. Harris and K. Hirschorn, eds.), Plenum Press, New York, pp. 1–136.CrossRefGoogle Scholar
  122. Wiels, J., Fellous, M., and Tursz, T., 1981, Monoclonal antibody against a Burkitt lymphoma-associated antigen, Proc. Natl. Acad. Sci. USA 78:6485–6488.CrossRefGoogle Scholar
  123. Williams, L. K., Sullivan, A., McIlhinney, R. A. J., and Neville, A. M., 1982, A monoclonal antibody markers of human primitive endoderm, Int. J. Cancer 30:731–738.CrossRefGoogle Scholar
  124. Willison, R. R., and Stern, P. L., 1978, Expression of a Forssman antigenic specificity in the preimplantation mouse embryo, Cell 14:785–793.CrossRefGoogle Scholar
  125. Willison, K. R., Karol, R. A., Suzuki, A., Kundu, S. K., and Marcus, D. M., 1982, Neutral glycolipid antigens as developmental markers of mouse teratocarcinoma and early embryos: An immunological and chemical analysis, J. Immunol. 129:603–609.Google Scholar
  126. Witebsky, E., 1929, Disponibilitat und Spezifitat alkoholloslicher Strukturen von Organen und bosartigen Geschwulsten, Z. Immunitatsforsch. Exp. Ther. 62:35–73.Google Scholar
  127. Wolf, B. A., and Robbins, P. W., 1974, Cell mitotic cycle synthesis of NIL hamster glycolipids including the Forssman antigen, J. Cell Biol. 61:676–687.CrossRefGoogle Scholar
  128. Yang, H.-J., and Hakomori, S., 1971, A sphingolipid having a novel type of ceramide and lacto-N-pentaose III, J. Biol. Chem. 246:1192–1200.Google Scholar
  129. Yeh, M.-Y., Hellström, I., Abe, K., Hakomori, S., and Hellström, K. E., 1982, A cell-surface antigen which is present in the ganglioside fraction and shared by human melanomas, Int. J. Cancer 29:269–275.CrossRefGoogle Scholar
  130. Young, W. W., Jr., and Hakomori, S., 1981, Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: Selection of low antigenic variants in vivo, Science 211:487–489.CrossRefGoogle Scholar
  131. Young, W. W., Jr., MacDonald, E. M. S., Nowinski, R. C. and Hakomori, S., 1979, Production of monoclonal antibodies specific for distinct portions of the glycolipid asialo GM2 (gangliotriaosyl-ceramide), J. Exp. Med. 150:1008–1019.CrossRefGoogle Scholar
  132. Young, W. W., Jr., Portoukalian, J., and Hakomori, S., 1981, Two monoclonal anticarbohydrate antibodies directed to glycosphingolipids with a lacto-N-glycosyl type II chain, J. Biol. Chem. 256:10967–10972.Google Scholar
  133. Young, W. W., Jr., Johnson, H. S., Tamura, Y., Karlsson, K.-A., Larson, G., Parker, J. M. R., Khare, D. P., Sophr, U., Baker, D. A., Hindsgaul, O., and Lemieux, R. U., 1983, Characterization of monoclonal antibodies specific for the Lewis human blood group determinant, J. Biol. Chem. 258:4890–4894.Google Scholar
  134. Zopf, D. A., and Ginsburg, V., 1975, Preparation of precipitating antigens by coupling oligosaccharides to polylysine, Arch. Biochem. Biophys. 167:345–350.CrossRefGoogle Scholar
  135. Zopf, D. A., Ginsburg, A., and Ginsburg, V., 1975, Goat antibody directed against a human Leb blood group hapten, lacto-N-difucohexaose I, J. Immunol. 115:1525–1529.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Sen-Itiroh Hakomori
    • 1
  1. 1.Division of Biochemical Oncology, Fred Hutchinson Cancer Research CenterUniversity of WashingtonSeattleUSA

Personalised recommendations