Monoclonal Antibodies and Molecular Genetics

Oncogenes and Oncogene Products
  • Roger H. Kennett
  • Zdenka L. Jonak
  • Naohiko Ikegaki


Two developing disciplines, recombinant DNA and monoclonal antibodies, have been at the forefront of the rapid expansion in biotechnology during the past few years. These techniques are, in fact, complementary with regard to the detailed information on the structure of biological macromolecules that they provide. The application of recombinant DNA techniques has given details of gene structure, including the existence of introns (intervening sequences), the recombination taking place during the rearrangement of genes in B-lymphocyte ontogeny, and the structure of specific transcription, RNA splicing, and translation signal sequences that were, for all practical purposes, previously unobtainable (Leder et al., 1982). On the other hand, monoclonal antibodies have made it possible to detect, isolate, and characterize new gene products as well as provide ways to study individual antigenic determinants (epitopes) on specific macromolecules in more detail (Kennett, 1981). It is evident that a more complete understanding of the relationships between gene structure and function will come more quickly as a combination of these technologies is applied to a variety of questions in cell and molecular biology. We will review applications in which monoclonal antibodies are being used to analyze details of molecular structure and how this technology interacts with recombinant DNA technology.


Monoclonal Antibody Spleen Cell Mouse Cell Recipient Cell Human Leukemia Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, H. D., Rohrschneider, L. R., and Eisenman, R. N., 1982, Nuclear location of the putative transforming protein of avian myelocytomatosis virus, Cell 29:427–439.CrossRefGoogle Scholar
  2. Atherton, B. T., Taylor, D. M., and Hynes, R. O., 1981, Structural analysis of fibronectin with monoclonal antibodies, J. Supramol. Struct. Cell. Biochem. 17:153–161.CrossRefGoogle Scholar
  3. Barbosa, J. A., Kamarck, M. E., Biro, P. A., Weissman, S. M., and Ruddle, F. H., 1982, Identification of human genomic clones coding the major histocompatibility antigens HLA-A2 and HLA-B7 by DNA-mediated gene transfer, Proc. Natl. Acad. Sci. USA 79:6327–6331.CrossRefGoogle Scholar
  4. Becker, D., Lane, M., and Cooper, G. M., 1982, Identification of an antigen associated with the transforming genes of human and mouse mammary carcinomas, Proc. Natl. Acad. Sci. USA 79:3315–3319.CrossRefGoogle Scholar
  5. Berzofsky, J. A., Hicks, G., Fedorko, J., and Minna, J., 1980, Properties of monoclonal antibodies specific for determinants of a protein antigen, myoglobin, J. Biol. Chem. 255:11188–11191.Google Scholar
  6. Berzofsky, J. A., Buckenmeyer, G. K., Hicks, G., Gurd, F. R. N., Feldmann, R. J., and Minna, J., 1982, Topographic antigenic determinants recognized by monoclonal antibodies to sperm whale myoglobin, J. Biol. Chem. 257:3189–3198.Google Scholar
  7. Binetruy, B., Meneguzzi, G., Breathnach, R., and Cuzin, F., 1982, Recombinant DNA molecules comprising bovine papilloma virus type 1 DNA linked to plasmid DNA are maintained in a plasmidial state both in rodent fibroblasts and in bacterial cells, EMBO (Eur. Mol. Biol. Org.) J. 1:621–628.Google Scholar
  8. Bishop, J. M., 1983, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52:301–354.CrossRefGoogle Scholar
  9. Broome, S., and Gilbert, W., 1978, Immunological screening method to detect specific translation products, Proc. Natl. Acad. Sci. USA 75:2746–2749.CrossRefGoogle Scholar
  10. Chang, L. J.-A., Gamble, C. L., Izaquirre, M. D., Minden, M. D., Mak, T. W., and McCulloch, E. A., 1982, Detection of genes coding for human differentiation markers by their transient expression after DNA transfer, Proc. Natl. Acad. Sci. USA 79:146–150.CrossRefGoogle Scholar
  11. Clevinger, B., Schilling, J., Griffith, R., Hansburg, D., Hood, L., and Davie, J., 1980, Antibody diversity patterns and structure of idiotypic determinants on murine anti-α-(1 → 3) dextran antibodies, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses. (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 37–48.Google Scholar
  12. Cline, M. J., Stang, H., Mercola, K., Morse, L., Ruprecht, R., Browne, J., and Salser, W., 1980, Gene transfer in intact animals, Nature 284:422–425.CrossRefGoogle Scholar
  13. Denis, K., Kennett, R. H., Klinman, N., Molinaro, C., and Sherman, L., 1980, Defining the B-cell repertoire with hybridomas derived from monoclonal fragment cultures, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 49–59.Google Scholar
  14. Der, C. J., Krontiris, T. G., and Cooper, G. M., 1982, Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses, Proc. Natl. Acad. Sci. USA 79:3637–3640.CrossRefGoogle Scholar
  15. DiMaio, D., Treisman, R., and Maniatis, T., 1982, Bovine papilloma virus vector that propagates as a plasmid in both mouse and bacterial cells, Proc. Natl. Acad. Sci. USA 79:4030–4034.CrossRefGoogle Scholar
  16. Donner, P., Grieser-Wilke, I. and Moelling, K., 1982, Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus, Nature 296:262–266.CrossRefGoogle Scholar
  17. Durban, E. M., and Boettiger, D., 1981, Differential effects of transforming avian RNA tumor virus on avian macrophages, Proc. Natl. Acad. Sci. USA 78:3600–3604.CrossRefGoogle Scholar
  18. Eager, K., and Kennett, R. H., 1980, Analysis of alpha-2-macroglobulin with monoclonal antibodies, Am. J. Hum. Genet. 32:153A.Google Scholar
  19. Eilat, D., Asofsky, R., and Laskov, R., 1980, A hybridoma from an autoimmune NZB/NZW mouse producing monoclonal antibody to ribosomal-RNA, J. Immunol. 124:766–768.Google Scholar
  20. Favera, R. D., Wong-Staal, F., and Gallo, R. C., 1982, onc gene amplification in promyelocytic leukemia cell line HL-60 and primary leukemic cells of the same patient, Nature 299:61–63.CrossRefGoogle Scholar
  21. Furth, M. E., Davis, L. J., Fleurdelys, B. and Scolnick, E. M., 1982, Monoclonal antibodies to the p21 products of the transforming gene of Harvey sarcoma virus and of the cellular ras gene family, J. Virol. 43:294–304.Google Scholar
  22. Gerhard, W., Yewdell, J., Frankel, M. E., Lopes, A. D., and Staudt, L., 1980, Monoclonal antibodies against influenza virus, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 317–333.Google Scholar
  23. Graham, F. L., and van der Eb, A. J., 1973a, A new technique for the assay of infectivity of human adenovirus DNA, Virology 52:456–467.CrossRefGoogle Scholar
  24. Graham, F. L., and van der Eb, A. J., 1973b, Transforming of rat cells by DNA of human adenovirus 5, Virology 54:536–539.CrossRefGoogle Scholar
  25. Gratzner, H. G., 1982, Monoclonal antibody to 5-bromodeoxyuridine and 5-iododeoxy uridine: A new reagent for detection of DNA replication, Science 218:474–475.CrossRefGoogle Scholar
  26. Haugen, A., Groopman, J. D., Hsu, I.-C., Goodrich, G. R., Wogan, G. N., and Harris, C. C., 1981, Monoclonal antibody to aflatoxin B1-modified DNA detected by enzyme immunoassay, Proc. Natl. Acad. Sci. USA 78:4124–4127.CrossRefGoogle Scholar
  27. Hoffman-Falk, H., Einat, P., Shilo, B.-Z. and Hoffman, F. M., 1983, Drosophila melanogaster DNA clones homologous to vertebrate oncogenes: Evidence for a common ancestor to the src and abl cellular genes, Cell 32:589–598.CrossRefGoogle Scholar
  28. Hopkins, N., Besmer, P., DeLeo, A. B., and Law, L. W., 1981, High frequency co-transfer of the transformed phenotype and a tumor-specific transplantation antigen by DNA for the 3-meth-ylcholanthrene-induced Meth A sarcoma of BALB/c mice, Proc. Natl. Acad. Sci. USA 78:7555–7559.CrossRefGoogle Scholar
  29. Ikegaki, N., and Kennett, R. H., 1983, Monoclonal antibodies against the myc oncogene product produced by in vitro immunization, in preparation.Google Scholar
  30. Jelinek, W. R., Toomey, T. P., Leinwand, L., Duncan, C. H., Biro, P. A., Choudary, P. V., Weissman, S. M., Rubin, C. M., Houck, C. M., Deininger, P. L., and Schmid, C. W., 1980, Ubiquitous, interspersed repeated sequences in mammalian genomes, Proc. Natl. Acad. Sci. USA 77:1398–1402.CrossRefGoogle Scholar
  31. Jonak, Z. L., Smith, A. A., Glick, M. C., Feder, M., and Kennett, R. H., 1983a, Wandering around the cell surface: Monoclonal antibodies against human neuroblastoma and leukemia cell surface antigens, in: Hybridomas and Cellular Immortality (J. P. Allison and B. H. Tom, eds.), Plenum Press, New York.Google Scholar
  32. Jonak, Z. L., Braman, V., and Kennett, R. H., 1983b, Production of continuous mouse plasma cell lines by transfection with human leukemia DNA, Hybridoma, in press.Google Scholar
  33. Kavathas, P., and Herzenberg, L. A., 1983, Stable transformation of mouse L cells for human membrane T-cell differentiation antigens, HLA and β2-microglobulin: Selection by fluorescence-activated cell sorting, Proc. Natl. Acad. Sci. USA 80:524–528.CrossRefGoogle Scholar
  34. Kennett, R. H., 1980, Enzyme linked antibody assay with cells attached to polyvinyl chloride plates, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 376–377.Google Scholar
  35. Kennett, R. H., 1981, Hybridomas: A new dimension in biological analyses, In Vitro 17:1036–1049.CrossRefGoogle Scholar
  36. Kennett, R. H., and Gilbert, F., 1979, Hybrid myelomas producing antibodies against a human neuroblastoma antigen present on fetal brain, Science 203:1120–1121.CrossRefGoogle Scholar
  37. Kennett, R. H., Denis, K. A., Tung, A. S., and Klinman, N. R., 1978, Hybrid plasmacytoma production. Fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells, and human spleen cells, Curr. Top. Microbiol. Immunol. 81:77–94.Google Scholar
  38. Kennett, R. H., Jonak, Z. L., Bechtol, K. B., and Byrd, R., 1981, Monoclonal antibodies as probes for cell surface changes in malignancy, in: Fundamental Mechanisms in Human Cancer Immunology (J. P. Saunders, J. C. Daniels, B. Serrou, C. Rosenfeld, and C. B. Denny, eds.), Elsevier/North-Holland, New York, pp. 332–348.Google Scholar
  39. Kennett, R. H., Eager, K. B., Meyer, B., Braman, V., Newberry, S., and Buck, D. W., 1982a, Monoclonal antibodies in the analysis of the molecular basis of human genetic diseases, in: From Gene to Protein: Translation into Biotechnology (F. Ahmad, J. Schultz, P. E. Smith, and W. J. Whalen, eds.), Academic Press, New York, pp. 143–164.Google Scholar
  40. Kennett, R. H., Jonak, Z. L., Momoi, M., Glick, M. C., and Lampson, L. A., 1982b, Analysis of cell surface molecules on human neuroblastoma cells and leukemia cells, in: Monoclonal Antibodies in Drug Development (T. August, ed.), American Society for Pharmacology and Experimental Therapeutics, Bethesda, Maryland, pp. 91–107.Google Scholar
  41. Klausner, A., 1983, Monoclonals from E. coli, Biotechnology 1:396–397.CrossRefGoogle Scholar
  42. Klotz, J. L., Phillips, M. L., Miller, M. M., and Teplitz, R. L., 1981, Monoclonal autoantibody production by hybrid cell lines, Clin. Immunol. Immunopathol. 18:368–374.CrossRefGoogle Scholar
  43. Koteliansky, V. E., Arsenyeva, E. L., Bogacheva, G. T., Chernousov, M. A., Glukhova, M. A., Ibraghimov, A. R., Metsis, M. L., Petrosyan, M. N., and Rokhlin, O. V., 1982, Identification of the species-specific antigeniceterminant(s) of human plasma fibronectin by monoclonal antibodies, FEBS Lett. 142:199–202.CrossRefGoogle Scholar
  44. Krontiris, T. G., and Cooper, G. M., 1981, Transforming activity in human tumor DNAs, Proc. Natl. Acad. Sci. USA 78:1181–1184.CrossRefGoogle Scholar
  45. Kucherlapati, R., 1982, Introduction and expression of foreign DNA sequences in mammalian cells, in: Advances in Cell Culture (K. Maramorsch, ed.), Academic Press, New York, pp. 69–98.Google Scholar
  46. Lane, D., and Koprowski, H., 1982, Molecular recognition and the future of monoclonal antibodies, Nature 296:200–202.CrossRefGoogle Scholar
  47. Lane, M., Sainten, A., and Cooper, G. M., 1981, Activation of related transforming genes in mouse and human mammary carcinomas, Proc. Natl. Acad. Sci. USA 78:5185–5189.CrossRefGoogle Scholar
  48. Lane, M., Sainten, A., and Cooper, G. M., 1982, Stage-specific transforming genes of human and mouse B- and T-lymphocyte neoplasms, Cell 28:873–880.CrossRefGoogle Scholar
  49. Laver, W. G., Air, G. M., Webster, R. G., Gerhard, W., Ward, C. W., and Dopheide, T. A., 1979, Antigenic drift in type A influenza virus sequence differences in the hemagglutinin of Hong Kong (H3N2) variants selected with monoclonal antibodies, Virology 98:226–237.CrossRefGoogle Scholar
  50. Leder, P., Hieter, P. A., Hollis, G. F., and Leder, A., 1982, Moving genes: Promises kept and pending, in: From Gene to Protein: Translation into Biotechnology, Miami Winter Symposium, Volume 19 (F. Ahmed, J. Schultz, E. E. Smith, and W. J. Whalen, eds.), Academic Press, New York, pp. 27–42.Google Scholar
  51. Littlefield, J. W., 1976, Variation, Sonescence, and Neoplasia in Cultured Somatic Cells, Harvard University Press, Cambridge.Google Scholar
  52. Littlefield, J. W., 1982, NIH/3T3 cell line, Science 218:215–216.CrossRefGoogle Scholar
  53. Luben, R. A., and Mohler, M. A., 1980, In vitro immunization as an adjunct to the production of hybridomas producing antibodies against the lymphokine osteoclast activating factor, Mol. Immunol. 17:635–639.CrossRefGoogle Scholar
  54. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  55. Marynen, P., VanLeuven, F., Cassiman, J.-J., and Van Den Berghe, H., 1981, A monoclonal antibody to a neo-antigen on α2-macroglobulin complexes inhibits receptor-mediated endocytosis, J. Immunol. 127:1782–1786.Google Scholar
  56. Müller, R., Slamon, D. J., Tremblay, J. M., Cline, M. J., and Verma, J. M., 1982, Differential expression of cellular oncogenes during pre- and postnatal development of the mouse, Nature 299:640–644.CrossRefGoogle Scholar
  57. Niman, H. L., and Elder, J. H., 1982, mAbs as probes of protein structure: Molecular diversity among the envelope glycoproteins (gp 70s) of the murine retroviruses, in: Monoclonal Antibodies and T-Cell Products (D. H. Katz, ed.), CRC Press, Boca Raton, Florida, pp. 23–51.Google Scholar
  58. Nordheim, A., Pardue, M. L., Lafer, E. M., Moller, A., Stoller, B. D., and Rich, A., 1981, Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes, Nature 294:417–422.CrossRefGoogle Scholar
  59. Padhy, L. C., Shih, C., Cowing, D., Finkelstein, R., and Weinberg, R. A., 1982, Identification of a phosphoprotein specifically induced by the transforming DNA of rat neuroblastomas, Cell 28:865–871.CrossRefGoogle Scholar
  60. Parada, L. F., Tabin, C. J., Shih, C., and Weinberg, R. A., 1982, Human EJ bladder carcinoma oncogene is homologous of Harvey sarcoma virus ras gene, Nature 297:474–478.CrossRefGoogle Scholar
  61. Pavlakis, G. N., and Hamer, D. H., 1983, Regulation of metallothionein-growth hormone hybrid gene in bovine papilloma virus, Proc. Natl. Acad. Sci. USA 80:397–401.CrossRefGoogle Scholar
  62. Pellicer, A., Robins, D., Wold, B., Sweet, R., Jackson, J., Lowy, I., Roberts, J. M., Sim, G. K., Silverstein, S., and Axel, R., 1980, Altering genotype and phenotype by DNA-mediated gene transfer, Science 209:1414–1422.CrossRefGoogle Scholar
  63. Perucho, M., Goldfarb, M., Shimizu, K., Loma, C., Fogh, C., and Wigler, M., 1981, Human tumor-derived cell lines contain common and different transforming genes, Cell 27:467–476.CrossRefGoogle Scholar
  64. Peterson, B. M., Roberts, B. E., and Kuff, E. L., 1977, Structural gene identification and mapping by DNA-mRNA hybrid arrested cell-free translation, Proc. Natl. Acad. Sci. USA 74:4370–4374.CrossRefGoogle Scholar
  65. Pierschbacher, M. D., Hayman, E. G., and Rouslahti, E., 1981, Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule, Cell 26:259–267.CrossRefGoogle Scholar
  66. Ploegh, H. L., Cannon, L. E., and Strominger, J. L., 1979, Cell-free translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens, Proc. Natl. Acad. Sci. USA 76:2273–2277.CrossRefGoogle Scholar
  67. Rajan, T. V., 1980, H-2 antigen variants on a cultured heterozygous mouse leukemia cell line. VII. Effect of selection with hybridoma antibody, Immunogenetics 10:423–431.CrossRefGoogle Scholar
  68. Rauch, J., Schwartz, R. S., and Stollar, B. D., 1982, Applications of hybridoma technology to autoimmunity, in: Monoclonal Antibodies and T-Cell Products (D. H. Katz, ed.), CRC Press, Boca Raton, Florida, pp. 91–111.Google Scholar
  69. Reddy, E. P., Reynolds, R. K., Santos, E., and Barbacid, 1982, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene, Nature 300:149–152.CrossRefGoogle Scholar
  70. Ricciardi, R. P., Miller, J. S., and Roberts, B. E., 1979, Purification and mapping of specific mRNAs by hybridization-selection and cell-free translation, Proc. Natl. Acad. Sci. USA 76:4927–4931.CrossRefGoogle Scholar
  71. Rosenfeld, C., Goutner, A., Choquet, C., Venuat, A. M., Kayibanda, B., Pico, J. L., and Greaves, J. L., 1977, Phenotypic characterization of a unique non-T, non-B acute lymphoblastic leukemia cell line, Nature 267:841–843.CrossRefGoogle Scholar
  72. Rossi, J. J., Kierzek, R., Huang, T., Walker, P., and Itakura, K., 1982, The role of synthetic DNA in the preparation of structural genes for proteins, in: From Gene to Protein: Translation into Biotechnology, Miami Winter Symposium, Volume 19 (F. Ahmed, J. Schultz, E. E. Smith, and W. J. Whalen, eds.), Academic Press, New York, pp. 213–234.Google Scholar
  73. Sarver, N., Gruss, P., Law, M.-F., Khoury, G., and Howley, P. M., 1981, Bovine papilloma virus deoxyribonucleic acid: A novel eucaryotic cloning vector, Mol. Cell. Biol. 1:486–496.Google Scholar
  74. Sarver, N., Byrne, J. C., and Howley, P. M., 1982, Transformation and replication in mouse cells of a bovine papilloma virus-pML2 plasmid vector that can be rescued in bacteria, Proc. Natl. Acad. Sci. USA 79:7147–7151.CrossRefGoogle Scholar
  75. Sekiguchi, T., Nishimoto, T., Kai, R., and Sekiguchi, M., 1983, Recovery of a hybrid vector, derived from bovine papilloma virus DNA, pBR322 and the HSV tk gene, by bacterial transformation with extra chromosomal DNA from transfected rodent cells, Gene 21:267–272.CrossRefGoogle Scholar
  76. Shih, C., Padhy, L. C., Murray, M., and Weinberg, R. A., 1981, Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts, Nature 290:261–264.CrossRefGoogle Scholar
  77. Shilo, B., and Weinberg, R. A., 1981, Unique transforming gene in carcinogen-transformed mouse cells, Nature 289:607–609.CrossRefGoogle Scholar
  78. Shimizu, K., Goldfarb, M., Suard, Y., Perucho, ML, Li, Y., Ramata, T., Feramisco, J., Stavnezer, E., Fogh, J., and Wigler, M. H., 1983, Three human transforming genes are related to the viral ras oncogenes, Proc. Natl. Acad. Sci. USA 80:2112–2116.CrossRefGoogle Scholar
  79. Smith, B. L., Anisowicz, A., Chodosh, L. A., and Sager, R., 1982, DNA transfer of focus- and tumor-forming ability into non-tumorigenic CHEF cells, Proc. Natl. Sci. USA 79:1964–1968.CrossRefGoogle Scholar
  80. Staehelin, T., Hobbs, D. S., Kugn, H., Lai, C. Y., and Pestka, S., 1981, Purification and characterization of recombinant human leukocyte interferon (IFLrA) with monoclonal antibodies, J. Biol. Chem. 256:9750–9754.Google Scholar
  81. Sutcliffe, J. G., Shinnick, T. M., Green, N., Liu, F. T., and Lerner, R. A., 1980, Chemical synthesis of a polypeptide predicted from nucleotide sequence allows detection of a new retroviral gene product, Nature 287:801–805.CrossRefGoogle Scholar
  82. Varmus, H. E., Shank, S. E., Hughes, H. J., Kung, S., Majors, J., Vogt, P. K., and Bishop, J. M., 1978, Synthesis, structure and integration of the DNA of RNA tumor viruses, Cold Spring Harbor Symp. Quant. Biol. 43:851–864.CrossRefGoogle Scholar
  83. Wang, Y., Stratowa, C., Schaefer-Ridder, M., Doehmer, J., and Hofschneider, P. H., 1983, Enhanced production of hepatitis B surface antigen in NIH/3T3 mouse fibroblasts by using extra chro-mosomally replicating bovine papilloma virus vector, Mol. Cell. Biol. 3:1032–1039.Google Scholar
  84. Weinberg, R. A., 1981, Use of transfection to analyze genetic information and malignant transformation, Biochem. Biophys. Acta 651:161–169.Google Scholar
  85. Weiss, R., Teich, N., Varmus, H., and Coffin, J. (eds.), 1982, RNA Tumor Virus, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  86. Young, R. A., and Davis, R. W., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. U.S.A. 80:1194–1198.CrossRefGoogle Scholar
  87. Yuasa, Y., Srivastava, S. K., Dunn, C. Y., Rhim, J. S., Reddy, E. P., and Aaronson, S. A., 1983, Acquisition of transforming properties by alternative point mutations within c-baslhas human proto-oncogene, Nature 303:775–779.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Roger H. Kennett
    • 1
  • Zdenka L. Jonak
    • 1
  • Naohiko Ikegaki
    • 1
  1. 1.Department of Human GeneticsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations