Advertisement

Additives and Contaminants

  • Raymond J. Shamberger

Abstract

This chapter presents data on a few selected compounds that are added directly to foods, as well as processing aids and some compounds that may migrate into foods in small amounts during packaging.

Keywords

Polycyclic Aromatic Hydrocarbon Bladder Cancer Vinyl Chloride Artificial Sweetener Vinyl Chloride Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, B. A., Lea, A. J., Adelstein, A. M., Donovan, J. W., White, G. C., & Ruttle, S. 1976. Cancer mortality and saccharin consumption in diabetics. Br. J. Prev. Soc. Med. 30: 151–157.PubMedGoogle Scholar
  2. 2.
    Christiansen, J. S. 1978. Cigarette smoking and prevalence of microangiopathy in juvenileonset insulin-independent diabetes mellitus. Diabetes Care 1: 146–149.PubMedCrossRefGoogle Scholar
  3. 3.
    Burbank, F., and Fraumeni, J. F. 1970. Synthetic sweetener consumption and bladder cancer trends in the United States. Nature 227: 296–297.PubMedCrossRefGoogle Scholar
  4. 4.
    Armstrong, B., and Doll, R. 1974. Bladder cancer mortality in England and Wales in relation to cigarette smoking and saccharin consumption. Br. J. Prev. Soc. Med. 28: 233–240.PubMedGoogle Scholar
  5. 5.
    Morgan, R. W., and Jain, M. G. 1974. Bladder cancer: Smoking, beverages and artificial sweeteners. Can. Med. Assoc. J. 111: 1067–1070.PubMedGoogle Scholar
  6. 6.
    Simon, D., Yen, S., and Cole, P. 1975. Coffee drinking and cancer of the lower urinary tract. J. Natl. Cancer Inst. 54: 587–591.PubMedGoogle Scholar
  7. 7.
    Howe, G. R., Burch, J. D., Miller, A. B., Morrison, B., Gordon, P., Weldon, L., Champbers, L. W., Fodor, G., and Winsor, G. M. 1977. Artificial sweeteners and human bladder cancer. Lancet 2: 578–581.PubMedCrossRefGoogle Scholar
  8. 8.
    Howe, G. R., Burch, J. D., Miller, A. B., Cook, G. M., Esteve, J., Morrison, G., Gordon, P., Chambers, L. W., Fodor, G., and Winsor, G. M. 1980. Tobacco use, occupation, coffee, various nutrients, and bladder cancer. J. Natl. Cancer Inst. 64: 701–713.PubMedGoogle Scholar
  9. 9.
    Kessler, I. I., and Clark, J. P. 1978. Saccharin, cyclamate and human bladder cancer. No evidence of an association. JAMA 240: 349–355.PubMedCrossRefGoogle Scholar
  10. 10.
    Miller, C. T., Neutel, C. I., Nair, R. C., Marrett, L. D., Last, J. M., and Collins, W. E. 1978. Relative importance of risk factors in bladder carcinogenesis. J. Chron. Dis. 31: 51–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Morrison, A. S. 1979. Use of artificial sweeteners by cancer patients. J. Natl. Cancer Inst. 62: 1397–1399.PubMedGoogle Scholar
  12. 12.
    Wynder, E. L., and Stellman, S. D. 1980. Artificial sweetener use and bladder cancer: A case control study. Science 207: 1214–1216.PubMedCrossRefGoogle Scholar
  13. 13.
    Morrison, A. S., and Burling, J. E. 1980. Artificial sweeteners and cancer of the lower urinary tract. N. Engl. J. Med. 302: 537–541.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoover, R. N., and Strassner, P. H. 1980. Saccharin: A bitter aftertaste? (Editorial.) N. Engl. J. Med. 302: 573–575.PubMedCrossRefGoogle Scholar
  15. 15.
    Morrison, A. S., Verhoek, W. G., Leck, I., Aoki, K., Ohno, Y., and Obata, K. 1982. Artificial sweeteners and bladder cancer in Manchester, U.K., and Nagoya, Japan. Br. J. Cancer 45: 332–336, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Silverman, D. T., Hoover, R. N., and Swanson, G. M. 1983. Artificial sweeteners and lower urinary tract cancer: Hospital vs. population controls. Am. J. Epidemiol. 117: 326–334.PubMedGoogle Scholar
  17. 17.
    Jensen, O. M., and Kamby, C. 1982. Intra-uterine exposure to saccharin and risk of bladder cancer in man. Int. J. Cancer 29: 507–509.PubMedCrossRefGoogle Scholar
  18. 18.
    Blot, W. J., Fraumeni, J. F., and Stone, B. J. 1978. Geographic correlates of pancreas cancer in the United States. Cancer 42: 373–380.PubMedCrossRefGoogle Scholar
  19. 19.
    Wynder, E. L., Mabuchi, K., Maruchi, N., and Former, J. G. 1973. Epidemiology of cancer of the pancreas. J. Natl. Cancer Inst. 50: 645–667.PubMedGoogle Scholar
  20. 20.
    Chowaniec, J., and Hicks, R. M. 1979. Response of the rat to saccharin with particular reference to the urinary bladder. Br. J. Cancer 39: 355–375.PubMedCrossRefGoogle Scholar
  21. 21.
    Arnold, D. L., Moodie, C. A., Grice, H. C., Charbonneau, S. M., Stavric, B., Collins, B. T., McGuire, P. F., Zawidzka, Z. Z., and Munro, I. C. 1980. Long-term toxicity of ortho-toluenesulfonamide and sodium saccharin in the rat. Toxicol. Appl. Pharmacol. 52: 113–152.PubMedCrossRefGoogle Scholar
  22. 22.
    Kroes, R., Peters, P. W. J., Berkrens, J. M., Verschuuren, H. G., de Vries, T., and Van Esch, G. J. 1977. Long term toxicity and reproduction study (including a teratogenicity study) with cyclamate, saccharin and cyclohexylamine. Toxicology 8: 285–300.PubMedGoogle Scholar
  23. 23.
    Cohen, S. M., Arai, M., Jacobs, J. B., and Friedell, G. H. 1979. Promoting effect of saccharin and DL-tryptophan in urinary bladder carcinogenesis. Cancer Res. 39: 1207–1217.PubMedGoogle Scholar
  24. 24.
    Trosko, J. E., Yotti, L. P., Warren, S., Tsushimoto, G., and Chang, C. C. 1982. Inhibition of cell-cell communication by tumor promotors. In E. Hecker, W. Kunz, S. Marx, N. E. Fusenig, and H. W. Phielmann (Eds.) Carcinogenesis: A comprehensive survey. Vol. 7: Carcinogenesis and biological effects of tumor promotors. pp. 565–585. New York: Raven Press.Google Scholar
  25. 25.
    Poncelot, F., Roberfroid, M., Mercier, M., and Lederer, J. 1979. Absence of mutagenic activity in Salmonella typhimurium of some impurities found in saccharin. Food Cosmet. Toxicol. 17: 229–231.CrossRefGoogle Scholar
  26. 26.
    Batzinger, R. P., Ou, S. Y. L., and Bueding, E. 1977. Saccharin and other sweeteners: Mutagenic properties. Science 198: 944–946.PubMedCrossRefGoogle Scholar
  27. 27.
    Clive, D., Johnson, K. O., Spector, J. F. S., Batson, A. G., and Brown, M. M. M. Validation and characterization of the L5178Y/TK+/- mouse lymphoma mutagen assay system. Mutat. Res. 59: 61-108.Google Scholar
  28. 28.
    Rao, M. S., and Qureshi, A. B. 1972. Induction of dominant lethals in mice by sodium saccharin. Indian J. Med. Res. 60: 599–603.PubMedGoogle Scholar
  29. 29.
    Ochi, H., and Tonomura, A. 1978. Presence of unscheduled DNA synthesis in cultured human cells after treatment with sodium saccharin. Mutat. Res. 54: 224.Google Scholar
  30. 30.
    Mondel, S., Brankow, D. W., and Heidelberger, C. 1978. Enhancement of oncogenesis in C3H/10T1/2 mouse embryo cell cultures by saccharin. Science 201: 1141–1142.CrossRefGoogle Scholar
  31. 31.
    Yoshida, S., Masubuchi, M., and Hiraga, K. 1978. Induced chromosome aberrations by artificial sweeteners in CHO-K1 cells. Mutat. Res. 54: 262.Google Scholar
  32. 32.
    Wolff, S., and Rodin, B. 1978. Saccharin-induced sister chromatid exchanges in Chinese hamster and human cells. Science 200: 543–545.PubMedCrossRefGoogle Scholar
  33. 33.
    Homburger, F. 1978. Negative lifetime carcinogen studies in rats and mice fed 50,000 ppm saccharin. in C. L. Galli, R. Paoletti, and G. Vettorazzi (Eds.) Chemical toxicology of food. pp. 359–373. New York: Elsevier/North-Holland Biomedical Press.Google Scholar
  34. 34.
    Rudali, G., Coezy, E., and Muranyi-Kovacs, I. 1969. Recherches sur l’action cancerigène du cyclamate de soude chez les souris. C.R. Hebd. Seances Acad. Sci. Ser. D 269: 1910–1912.Google Scholar
  35. 35.
    Brantom, P. B., Gaunt, I. F., and Grasso, P. 1973. Long-term toxicity of sodium cyclamate in mice. Food Cosmet. Toxicol. 11: 735–746.PubMedGoogle Scholar
  36. 36.
    Hicks, R. M., Chowaniec, J., and Wakefield, J. St. J. 1978. Experimental induction of bladder tumors by a two-stage system. in T. J. Slaga, A. Sivak, and R. K. Boutwell (Eds.) Carcinogenesis: A comprehensive survey. Vol. 2: Mechanisms of tumor promotion and cocarcinogenesis. pp. 475–489. New York: Raven Press.Google Scholar
  37. 37.
    Friedman, L., Richardson, H. L., Richardson, M. E., Lethco, E. J., Wallace, W. C., and Sauro, F. M. 1972. Toxic response of rats to cyclamates in chow and semisynthetic diets. J. Natl. Cancer Inst. 49: 751–764.PubMedGoogle Scholar
  38. 38.
    Kroes, R., Peters, P. W. J., Berkvans, J. M., Verschuuren, H. G., de Vries, T., and van Esch, G. J. 1977. Long term toxicity and reproduction study (including a teratogenicity study) with cyclamate, saccharin, and cyclohexylamine. Toxicology 8: 285–300.PubMedGoogle Scholar
  39. 39.
    Hicks, R. M., Chowaniec, J., and Wakefield, J. St. J. 1978. Experimental induction of bladder tumors by a two-stage system. in T. J. Slaga, A. Sivak, and R. K. Boutwell (Eds.) Carcinogenesis—A comprehensive survey. Vol. 2: Mechanisms of tumor promotion and cocarcinogenesis. pp. 475–489. New York: Raven Press.Google Scholar
  40. 40.
    Mohr, U., Green, U., Althoff, J., and Schneider, P. 1978. Syncarcinogenic action of saccharin and sodium-cyclamate in the induction of bladder tumours in MNU-pretreated rats. in B. Guggenheim (Ed.) Health and sugar substitutes. pp. 64–69. New York: S. Kargar.Google Scholar
  41. 41.
    Ebenezer, L. N., and Sadasivan, G. 1970. In vitro effect of cyclamates on human chromosomes. Q. J. Surg. Sci. 6: 116–118.Google Scholar
  42. 42.
    Tokumitsu, T. 1971. Some aspects of cytogenetic effects of sodium cyclamate on human leucocytes in vitro. Proc. Jpn. Acad. 47: 635–639.Google Scholar
  43. 43.
    Machemer, L., and Lorke, D. 1976. Evaluation of the mutagenic potential of cyclohexylamine on spermatogonia of the Chinese hamster. Mutat. Res. 40: 243–250.PubMedCrossRefGoogle Scholar
  44. 44.
    Searle, G. D., and Co. 1974. An evaluation of mutagenic potential employing the host-mediated assay in the mouse. P-T No. 1095S73. Skokie, Illinois: G. D. Searle and Co.Google Scholar
  45. 45.
    U.S. Food and Drug Administration. 1981. Aspartame; commissioner’s final decision. Fed. Regist. 46: 38283–38308.Google Scholar
  46. 46.
    Searle, G. D. and Co. 1978. An evaluation of the mutagenic potential employing the Ames Salmonella/microsome assay. Final report. S.A. 13-85. Skokie, Illinois: G. D. Searle and Co.Google Scholar
  47. 47.
    Price, P. J., Suk, W. A., Freeman, A. E., Lane, W. T., Peters, R. L., Vernon, M. L., and Huebner, R. J. 1978. In vitro and in vivo indications of the carcinogenicity and toxicity of food dyes. Br. J. Cancer 21: 361–367.Google Scholar
  48. 48.
    National Cancer Institute. 1979. Bioassay of butylated hydroxytoluene (BHT) for possible carcinogenicity. NCI carcinogenesis techical report series no. 150. NIH Publ. No. 79-1706. Bethesda, Maryland: Carcinogenesis Testing Program, National Cancer Institute.Google Scholar
  49. 49.
    Witschi, H. P. 1981. Enhancement of tumor formation in mouse lung by dietary butylated hydroxytoluene. Toxicology 21: 95–104.PubMedCrossRefGoogle Scholar
  50. 50.
    Trosko, J. E., Yotti, L. P., Warren, S., Tsushimoto, G., and Chang, C. C. 1982. Inhibition of cell-cell communication by tumor promotors. in E. Hecker, W. Kunz, S. Marx, N. E. Fusenig, and H. W. Phielmann (Eds.) Carcinogenesis: A comprehensive survey. Vol. 7: Carcinogenesis and biological effects of tumor promotors. New York: Raven Press.Google Scholar
  51. 51.
    Sciorra, L. J., Kaufmann, B. N., and Maier, R. 1974. The effects of butylated hydroxytoluene on the cell cycle and chromosome morphology of phytohaemagglutinin-stimulated leucocyte cultures. Food Cosmet. Toxicol. 12: 33–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Abe, S., and Sasaki, M. 1977. Chromosome aberrations and sister chromatid exchanges in Chinese hamster cells exposed to various chemicals. J. Natl. Cancer Inst. 58: 1635–1641.PubMedGoogle Scholar
  53. 53.
    Wattenberg, L. W. 1979. Inhibitors of chemical carcinogens. in P. Emmelot and E. Kriek (Eds.) Environmental carcinogenesis. pp. 241–263. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
  54. 54.
    Wattenberg, L. W. 1981. Inhibitions of chemical carcinogens. in J. H. Burchenol and H. F. Oettgen (Eds.) Cancer: Achievements, challenges and prospects for the 1980’s. Vol. 1. pp. 517–539. New York: Grune & Stratton.Google Scholar
  55. 55.
    Benson, S. M., Cha, Y. N., Bueding, E., Heine, H. S., and Talalay, P. 1979. Elevation of extrahepatic glutathione 5-transferase and epoxide hydratase activities by 2(3)-tert-butyl-4-hydroxyanisole. Cancer Res. 39: 2971–2977.PubMedGoogle Scholar
  56. 56.
    Cha, Y. N., and Bueding, E. 1979. Effect of 2(3)-tert-butyl-4-hydroxyanisole administration on the activities of several hepatic microsomal and cytoplasmic enzymes in mice. Biochem. Pharmacol. 28: 1917–1921.PubMedCrossRefGoogle Scholar
  57. 57.
    Cha, Y. N., Martz, F., and Bueding, E. 1978. Enhancement of liver microsome epoxide hydratase activity in rodents by treatment with 2(3)-tert-butyl-4-hydroxyanisole. Cancer Res. 38: 4496–4498.PubMedGoogle Scholar
  58. 58.
    Lam, L. K. T., Fladmoe, A. V., Hochalter, J. B., and Wattenberg, L. W. 1980. Short time interval effects of butylated hydroxyaninsole on the metabolism of benzopyrene. Cancer Res. 40: 2824–2828.PubMedGoogle Scholar
  59. 59.
    Batzinger, R. P., Ou, S. Y. L., and Bueding, E. 1978. Antimutagenic effects of 2(3)-tert-butyl-4-hydroxyanisole and of antimicrobial agents. Cancer Res. 38: 4478–4485.PubMedGoogle Scholar
  60. 60.
    Wattenberg, L. W., Coccia, J. B., and Lam, L. K. T. 1980. Inhibitory effects of phenolic compounds on benzopyrene-induced neoplasia. Cancer Res. 40: 2820–2823.PubMedGoogle Scholar
  61. 61.
    Wattenberg, L. W., and Loub, W. D. 1978. Inhibition of polycyclic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 38: 1410–1413.PubMedGoogle Scholar
  62. 62.
    Pantuck, E. J., Hsiao, K. C., Loub, W. D., Wattenberg, L. W., Kuntzman, R., and Conney, A. H. 1976. Stimulatory effect of vegetables on intestinal drug metabolism in the rat. J. Pharmacol. Exp. Ther. 198: 278–283.PubMedGoogle Scholar
  63. 63.
    Wattenberg, L. W. 1979. Naturally occurring inhibitors of chemical carcinogenesis. in E. C. Miller, J. A. Miller, I. Hirono, T. Sugimura, and S. Takayama (Eds.) Naturally occurring carcinogens—mutagens and modulators of carcinogenesis. pp. 315–329. Baltimore: University Park Press.Google Scholar
  64. 64.
    Wattenberg, L. W. 1981. Inhibition of carcinogen-induced neoplasia by sodium cyanate, tert-butyl isocyanate and benzyl isothiocyanate administered subsequent to carcinogen exposure. Cancer Res. 41: 2991–2994.PubMedGoogle Scholar
  65. 65.
    Wattenberg, L. W., and Leong, J. L. 1970. Inhibition of the carcinogenic action of ben-zopyrene by flavones. Cancer Res. 30: 1922–1925.PubMedGoogle Scholar
  66. 66.
    Sparnins, V. L., and Wattenberg, L. W. 1981. Enhancement of glutathione S-transferase activity of the mouse forestomach by inhibitors of benzopyrene-induced neoplasia of fore-stomach. J. Natl. Cancer Inst. 66: 769–771.PubMedGoogle Scholar
  67. 67.
    Sparnins, V. L. 1980. Effects of dietary constituents on glutathione S-transferase (GST) activity. Proc. Am. Assoc. Cancer Res. 21: 80.Google Scholar
  68. 68.
    Lam, L. K. T., Sparnins, V. L., and Wattenberg, L. 1982. Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-transferase activity in the mouse. Cancer Res. 42: 1193–1198.PubMedGoogle Scholar
  69. 69.
    Pantuck, E. J., Pantuck, C. B., Garland, W. A., Min, B. H., Wattenberg, L. W., Anderson, K. E., Kappas, A., and Conneg, A. H. 1979. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin. Pharmacol. Ther. 25: 88–95.PubMedGoogle Scholar
  70. 70.
    MacGregor, J. T., and Jurd, L. 1978. Mutagenicity of plant flavonoids: Structural requirements for mutagenic activity in Salmonella typhimurium. Mutat. Res. 54: 297–309.PubMedGoogle Scholar
  71. 71.
    Troll, W. 1981. Blocking of tumor promotion by protease inhibitors. in J. H. Burchenol and H. F. Oettgen (Eds.) Cancer: Achievements, challenges, and prospects for the 1980’s. Vol. 1. pp. 549–555. New York: Grune & Stratton.Google Scholar
  72. 72.
    Kennedy, A. R., and Little, J. B. 1981. Effects of protease inhibitors on radiation transformation in vitro. Cancer Res. 41: 2103–2108.PubMedGoogle Scholar
  73. 73.
    Cohen, B. I., and Raicht, R. F. 1981. Plant sterols: Protective role in chemical carcinogenesis. in M. S. Zedeck and M. Lipkin (Eds.) Inhibition of tumor induction and development. pp. 189–201. New York: Plenum.CrossRefGoogle Scholar
  74. 74.
    Creech, J. L., and Johnson, M. N. 1974. Angiosarcoma of liver in the manufacture of polyvinyl chloride. J. Occup. Med. 16: 150–151.PubMedGoogle Scholar
  75. 75.
    Tabershaw, I. R., and Goffey, W. R. 1974. Mortality study of workers in the manufacture of vinyl chloride and its polymers. J. Occup. Med. 16: 509–518.PubMedCrossRefGoogle Scholar
  76. 76.
    Monson, R. R., Peters, J. M., and Johnson, M. N. 1974. Proportional mortality among vinyl-chloride workers. Lancet 2: 397–398.PubMedCrossRefGoogle Scholar
  77. 77.
    Fox, A. J., and Collier, P. F. 1977. Mortality experience of workers to vinyl chloride monomer in the manufacture of polyvinyl chloride in Great Britain. Br. J. Indust. Med. 34: 1–10.Google Scholar
  78. 78.
    Maltoni, C. 1977. Vinyl chloride carcinogenicity: An experimental model for carcinogenesis studies, in H. H. Hiatt, J. D. Watson, and J. A. Winsten (Eds.) Origins of human cancer. Book A: Incidence of cancer in humans. pp. 119–146. Cold Spring Harbor Laboratory, New York: Cold Spring Harbor.Google Scholar
  79. 79.
    Feron, V. J., Speek, A. J., Williams, M. I., van Battum, D., and deGroot, A. P. 1975. Observations on the oral administration and toxicity of vinyl chloride in rats. Food Cosmet. Toxicol. 13: 633–638.PubMedCrossRefGoogle Scholar
  80. 80.
    Bartsch, H., Malaveille, G., Barbin, A., and Planche, G. 1979. Mutagenic and alkylating metabolites of halo-ethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissues. Evidence for oxirane formation by P450 microsomal monooxygenases. Arch. Toxicol. 41: 249–277.PubMedCrossRefGoogle Scholar
  81. 81.
    Eckardt, F., Muliawan, H., de Ruiter, N., and Kappus, H. 1981. Rat hepatic vinyl chloride metabolites induce gene conversion in the yeast strain, D7RAD in vitro and in vivo. Mutat. Res. 91: 381–390.PubMedCrossRefGoogle Scholar
  82. 82.
    Heath, C. W., Dumont, C. R., and Waxweiller, R. J. 1977. Chromosomal damage in men occupationally exposed to vinyl chloride monomer and other chemicals. Environ. Res. 14: 68–72.PubMedCrossRefGoogle Scholar
  83. 83.
    O’Berg, M. T. 1980. Epidemiologic study of workers exposed to acrylonitrile. J. Occup. Med. 22: 245–252.PubMedGoogle Scholar
  84. 84.
    Norris, J. M. 1977. Status report on the 2 year study incorporating acryonitrile in the drinking water of rats. Health and environmental research. pp. 1–14. Midland, Michigan: The Dow Chemical Company.Google Scholar
  85. 85.
    Milvey, P. 1978. (Letter to the Editor.) Mutat. Res. 57: 110–112.Google Scholar
  86. 86.
    Venitt, S., Bushell, C. T., and Osborne, M. 1977. Mutogenicity of acrylonitrile (cyanoethylene) in Escherichia coli. Mutat. Res. 45: 283–288.PubMedGoogle Scholar
  87. 87.
    Thiess, A. M., and Fleig, I. 1978. Analysis of chromosomes of workers exposed to acrylonitrile. Arch. Toxicol. 41: 149–152.PubMedCrossRefGoogle Scholar
  88. 88.
    Jukes, T. H. 1974. Diethylstilbesterol in beef production: What is the risk to consumers? Prev. Med. 5: 438–453.CrossRefGoogle Scholar
  89. 89.
    Herbst, A. L., and Cole, P. 1978. Epidemiologic and clinical aspects of clear cell adenocarcinoma in young women. in A. L. Herbst (Ed.) Intrauterine exposure to diethylstilbesterol in the human. pp. 2–7. Chicago: American College of Obstetricians and Gynecologists.Google Scholar
  90. 90.
    Bulow, H., Wullstein, H. K., Bottger, G., and Schroder, F. H. 1973. Carcinomas of the breast under estrogen-treatment for prostatic carcinoma. Urologe A 12: 249–253.PubMedGoogle Scholar
  91. 91.
    Cutler, B. S., Forbes, A. P., Ingersoll, F. M., and Scully, R. E. 1972. Endometrial carcinoma after stilbesterol therapy in gonadol dysgenesis. N. Engl. J. Med. 287: 628–631.PubMedCrossRefGoogle Scholar
  92. 92.
    Gass, G. H., Coats, D., and Graham, N. 1964. Carcinogenic dose-response curve to oral diethylstilbesterol. J. Natl. Cancer Inst. 33: 971–977.PubMedGoogle Scholar
  93. 93.
    Gass, G. H., Brown, J., and Okey, A. B. 1974. Carcinogenic effects of oral diethylstilbesterol on C3H mice with and without the mammary tumor virus. J. Natl. Cancer Inst. 53: 1369–1370.PubMedGoogle Scholar
  94. 94.
    Gibson, J. P., Newberne, J. W., Kuhn, W. L., and Elsen, J. R. 1967. Comparative chronic toxicity of three oral estrogens in rats. ToxicoL Appl. Pharmacol. 11: 489–510.PubMedCrossRefGoogle Scholar
  95. 95.
    Rustia, M. 1979. Role of hormone imbalance in transplacental carcinogenesis induced in Syrian golden hamsters by sex hormones. Natl. Cancer Inst. Monogr. 51: 77–87.PubMedGoogle Scholar
  96. 96.
    Glatt, H. R., Metzler, A., and Oesch, F. 1979. Diethylstilbesterol and 11 derivatives. A mutagenicity study with Salmonella typhimurium. Mutat. Res. 67: 113–121.PubMedCrossRefGoogle Scholar
  97. 97.
    Fluck, E. R., Poirier, L. A., and Ruelius, H. W. 1976. Evaluation of a DNA polymerase-deficient mutant of E. coli for the rapid detection of carcinogens. Chem. Biol. Interact. 15: 219–231.PubMedCrossRefGoogle Scholar
  98. 98.
    Ishidate, M., and Odashima, S. 1977. Chromosome tests with 134 compounds on Chinese hamster cells in vitro—a screening for chemical carcinogens. Mutat. Res. 48: 337–353.PubMedGoogle Scholar
  99. 99.
    Ivett, J. L., and Tice, R. R. 1981. Diethylstilbesterol-diphosphate induces chromosomal aberrations but not sister chromalid exchanges in murine bone marrow cells in vivo. Environ. Mutagen. 3: 445–452.PubMedCrossRefGoogle Scholar
  100. 100.
    Clive, D., Johnson, K. O., Spector, J. F. S., Batson, A. G., and Brown, M. M. M. 1979. Validalion and characterization of the L5178Y/TK+/− mouse lymphoma mutagen assay system. Mutat. Res. 59: 61–108.PubMedGoogle Scholar
  101. 101.
    Martin, C. N., McDermid, A. C., and Garner, H. C. 1978. Testing of known carcinogens and noncarcinogens for their ability to induce unscheduled DNA synthesis in HeLa cells. Cancer Res. 38: 2621–2627.PubMedGoogle Scholar
  102. 102.
    Chrisman, C. L. 1974. Aneuploidy in mouse in embryos induced by diethylstilbesterol diphosphate. Teratology 9: 229–232.PubMedCrossRefGoogle Scholar
  103. 103.
    National Academy of Science—National Research Council. 1982. Diet, nutrition, and cancer. pp. 14–1 to 14-54. in Additives and contaminants. Washington, D.C.: National Academy Press.Google Scholar
  104. 104.
    Dikshith, T. S. S. 1973. In vivo effects of parathion on guinea pig chromosomes. Environ. Physiol. Biochem. 3: 161–168.Google Scholar
  105. 105.
    Huang, C. C. 1973. Effect on growth but not on chromosomes of the mammalian cells after treatment with three organophosphorous insecticides. Proc. Soc. Exp. Biol. Med. 142: 36–40.PubMedGoogle Scholar
  106. 106.
    Eisenbrand, G., Schmahl, D., and Preussman, N. 1976. Carcinogenicity in rats of high oral doses of N-nitrosocarbaryl, a nitrosated pesticide. Cancer Lett. 1: 281–284.PubMedCrossRefGoogle Scholar
  107. 107.
    Schwartz, L. 1943. An outbreak of halowax acne (“table rash”) among electricians. JAMA 122: 158–161.CrossRefGoogle Scholar
  108. 108.
    Jelinek, C. 1981. Occurrence and methods of control of chemical contaminants in foods. Environ. Health Perspect. 39: 143–151.PubMedCrossRefGoogle Scholar
  109. 109.
    U.S. Food and Drug Administration. 1980. FDA Compliance Program Report of Findings. FY77 Total Diet Studies—Adult (7320.73). Washington, D.C.: Food and Drug Administration, U.S. Department of Health, Education and Welfare.Google Scholar
  110. 110.
    Kutz, F. W., and Strassman, S. C. 1976. Residues of polychlorinated biphenyls in the general population of the United States. in The national conference on polychlorinated biphenyls. November 1975, Chicago, Illinois. pp. 139-143. Washington, D.C.: EPA-560/6-75-004. Office of Toxic Substances, Environmental Protection Agency.Google Scholar
  111. 111.
    Makiura, S., Aoe, H., Sugihara, S., Hirao, K., and Ito, N. 1974. Inhibitory effect of polychlorinated biphenyls on liver tumorigenesis in rats treated with 31-methyl-4-dimethylaminoazobenzene, N-2-fluorenylacetamide, and diethylnitrosamine. J. Natl. Cancer Inst. 53: 1253–1257.PubMedGoogle Scholar
  112. 112.
    Preston, B. D., Van Miller, J. P., Moore, R. W., and Allen, J. R. 1981. Promoting effects of polychlorinated biphenyls (Aroclor 1254) and polychlorinated dibenzofuran-free Aroclor 1254 on diethylnitrosamine-induced tumorigenesis in the rat. J. Nat. Cancer Inst. 66: 509–515.PubMedGoogle Scholar
  113. 113.
    Wertz, G. F., and Fiscor, G. 1978. Cytogenetic and teratogenic test of polybrominated biphenyls in rodents. Environ. Health Perspect. 23: 129–132.PubMedCrossRefGoogle Scholar
  114. 114.
    Howard, J. W., and Fazio, T. 1980. Review of polycyclic aromatic hydrocarbons in foods. Analytical methodology and reported findings of polycyclic aromatic hydrocarbons in foods. J. Assoc. Off. Anal. Chem. 63: 1077–1104.PubMedGoogle Scholar
  115. 115.
    Fritz, W. 1969. Zum Losungrerhalten der Polyaromaten beim Kochen von Kaffee-Ersatzstoffen and Bohnenkaffee. Dtsch. Lebensm. Rundsch. 65: 83–85.Google Scholar
  116. 116.
    Masuda, Y., Mori, K., Hirohata, T., and Kuratsune, M. 1966. Carcinogenesis in the esophagus. III. Polycyclic aromatic hydrocarbons and phenols in whiskey. Gann 57: 549–557.PubMedGoogle Scholar
  117. 117.
    Grimmer, G. 1968. Cancerogene kohlenwasserstoffe in der Umgebung des Menschen. Dtsch. Apoth. Ztg. 108: 529–533.Google Scholar
  118. 118.
    Suess, M. J. 1976. The environmental load and cycle of polycyclic aromatic hydrocarbons. Sci. Total Environ. 6: 239–250.CrossRefGoogle Scholar
  119. 119.
    Fritz, W. 1971. Umfang und Quellen der Kontamination unserer Lebensmittel mit kreb-serzeugenden Kohlenwasserstoffen. Ernaehrungsforschung 16: 547–557.Google Scholar
  120. 120.
    Soos, K. 1980. The occurrence of carcinogenic polycyclic hydrocarbons in foodstuffs in Hungary. Arch. Toxicol. Suppl. 4: 446–448.PubMedCrossRefGoogle Scholar
  121. 121.
    Doll, R., Vessey, M. P., Beasley, R. W. R., Buckley, A. R., Fear, E. C., Fisher, R. E. W., Gammon, E. J., Gunn, W., Hughes, G. O., Lee, K., and Norman-Smith, B. 1972. Mortality of gas-workers—final report of a prospective study. Br. J. Ind. Med. 29: 394–406.PubMedGoogle Scholar
  122. 122.
    Freudenthal, R., and Jones, P. W. (Eds.) 1976. Carcinogenicity—hydrocarbons: Chemistry, metabolism and carcinogenesis. New York: Raven Press.Google Scholar

Copyright information

© Raymond J. Shamberger 1984

Authors and Affiliations

  • Raymond J. Shamberger
    • 1
  1. 1.The Cleveland Clinic FoundationClevelandUSA

Personalised recommendations