Thermal Control of Fatty Acid Synthetases in Bacteria

  • Akihiko Kawaguchi
  • Yousuke Seyama
Part of the Biomembranes book series (B, volume 12)


A wide variety of organisms, ranging from bacteria to higher plants and animals, adjust the fatty acid composition of their membrane lipids in response to the environmental temperature. The mechanisms regulating the temperature-dependent alteration, which have been studied extensively by many investigators (Sinensky, 1971; Kito et al., 1975; Cronan and Gelmann, 1975; Okuyama et al., 1977; Slack and Roughan, 1978; Fukushima et al., 1976; Miller et al., 1976; Cossins and Prosser, 1978), seem to operate at the levels of both phosphatidic acid synthesis and fatty acid synthesis. Microorganisms are particularly useful for studying the mechanisms of this alteration for two reasons. First, they quickly respond to changes in their growth temperature, and second, it is relatively easy to isolate mutants, which may provide a great deal of information. The most commonly observed changes in fatty acid composition are those in the proportions of unsaturated fatty acids and in the degree of unsaturation. In some cases, acyl chain length may also change with that of the growth temperature (McElhaney, 1974; see Russell, this volume).


Fatty Acid Composition Unsaturated Fatty Acid Saturated Fatty Acid Fatty Acid Synthesis Cellular Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai, K., Kawaguchi, A., Saito, Y., Koike, S., Seyama, Y., Yamakawa, T., and Okuda, S., 1982, Propionyl-CoA induced synthesis of even-chain-length fatty acids by fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 91:11.PubMedGoogle Scholar
  2. Ariga, N., Maruyama, K., and Kawaguichi, A., 1984, Comparative studies on fatty acid synthases of corynebacteria, J. Gen. Appl. Microbiol., in press.Google Scholar
  3. Arnstadt, K. I., Schindlbeck, G., and Lynen, F., 1975, Zum Mechanismus der Kondensationsreaktion der Fettsäurebiosynthese, Eur. J. Biochem. 55:561.PubMedCrossRefGoogle Scholar
  4. Bloch, K., 1969, Enzymic synthesis of monounsaturated fatty acids, Acc. Chem. Res. 2:193.CrossRefGoogle Scholar
  5. Bloch, K., 1977, Control mechanisms for fatty acid synthesis in Mycobacierium smegmatis, Adv. Enxymol. 45:1.Google Scholar
  6. Bloch, K., Baronowsky, P., Goldfine, H., Lennarz, W. J., Light, R., Norris, A. T., and Scheuerbrandt, G., 1961, Biosynthesis and metabolism of unsaturated fatty acids, Fed. Proc. 20:921.PubMedGoogle Scholar
  7. Bowie, I. S., Grigor, M. R., Dunckley, G. G., Loutit, M. W., and Loutit, J. S., 1972, The DNA base composition and fatty acid constitution of some gram-positive pleomorphic soil bacteria, Soil Biol. Biochem. 4:397.CrossRefGoogle Scholar
  8. Brock, D. J. H., Kass, L. R., and Bloch, K., 1967, β-Hydroxydecanoyl thioester dehydrase. II. Mode of action, J. Biol. Chem. 242:4432. PubMedGoogle Scholar
  9. Buttke, T. M., and Ingram, L. O., 1978, Inhibition of unsaturated fatty acid synthesis in Escherichia coli by the antibiotic cerulenin, Biochemistry 17:5282.PubMedCrossRefGoogle Scholar
  10. Carey, E. M., and Dils, R., 1970, Fatty acid biosynthesis. VI. Specificity of termination of fatty acid biosynthesis by fatty acid synthetase from lactating-rabbit mammary gland, Biochim. Biophys. Acta 210:388.PubMedGoogle Scholar
  11. Collins, M. D., and Jones, D., 1980, Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid, J. Appl. Bacteriol. 48:459.CrossRefGoogle Scholar
  12. Collins, M. D., Pirouz, T., Goodfellow, M., and Minnikin, D. E., 1977, Distribution of menaquinones in actinomycetes and corynebacteria, J. Gen. Microbiol. 100:221.PubMedGoogle Scholar
  13. Collins, M. D., Goodfellow, M., and Minnikin, D. E., 1979, Isoprenoid quinones in the classification of coryneform and related bacteria, J. Gen. Microbiol. 110:127.PubMedGoogle Scholar
  14. Collins, M. D., Goodfellow, M., and Minnikin, D. E., 1980, Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa, J. Gen. Microbiol. 118:29.PubMedGoogle Scholar
  15. Cossins, A. R., and Prosser, C. L., 1978, Evolutionary adaptation of membranes to temperature, Proc. Natl. Acad. Sci. USA 75:2040.PubMedCrossRefGoogle Scholar
  16. Crombach, W. H. J., 1972, DNA base composition of soil arthrobacters and other coryneforms from cheese and sea fish, Antonie van Leeuwenhoek J. Microbiol. Serol. 38:105.CrossRefGoogle Scholar
  17. Crombach, W. H. J., 1974, Relationships among coryneform bacteria from soil, cheese, and sea fish, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:347.CrossRefGoogle Scholar
  18. Cronan, J. E., Jr., and Gelmann, E. P., 1975, Physical properties of membrane lipids: Biological relevance and regulation, Bacteriol. Rev. 39:232.PubMedGoogle Scholar
  19. D’Agnolo, G., Rosenfeld, I. S., and Vagelos, P. R., 1975, Multiple forms of β-ketoacyl-acyl carrier protein synthetase in Escherichia coli, J. Biol. Chem. 250:5289.PubMedGoogle Scholar
  20. Erwin, J., and Bloch, K., 1964, Biosynthesis of unsaturated fatty acids in microorganisms, Science 143:1006.PubMedCrossRefGoogle Scholar
  21. Fiedler, F., and Kandier, O., 1973, Die Mureintypen in der Gattung Cellulomonas Bergey et al., Arch. Microbiol. 89:41.CrossRefGoogle Scholar
  22. Fiedler, F., Schäffler, M. J., and Stackebrandt, E., 1981, Biochemical and nucleic acid hybridization studies on Brevibacterium linens and related strains, Arch. Microbiol. 129:85.CrossRefGoogle Scholar
  23. Flick, P. K., and Bloch, K., 1974, In vitro alterations of the product distribution of the fatty acid synthetase from Mycobacterium phlei, J. Biol. Chem. 249:1031.PubMedGoogle Scholar
  24. Fukushima, H., Martin, C., Iida, H., and Nozawa, Y., 1976, Changes in membrane lipid composition during temperature adaptation by a thermotolerant strain of Tetrahymena pyriformis, Biochim. Biophys. Acta 431:165.PubMedGoogle Scholar
  25. Fulco, A. J., 1974, Metabolic alterations of fatty acids, Annu. Rev. Biochem. 43:215.PubMedCrossRefGoogle Scholar
  26. Garwin, J. L., Klages, A. L., and Cronan, J. E. Jr., 1980, Structure, enzymic, and genetic studies of β-ketoacyl-acyl carrier protein synthetases I and II of Escherichia coli, J. Biol. Chem. 255:11949.PubMedGoogle Scholar
  27. Helmkamp, G. M., Rando, R. R., Brock, D. J. H., and Bloch, K., 1968, β-Hydroxydecanoyl thioester dehydrase: Specificity of substrates and acetylenic inhibitors, J. Biol. Chem. 243:3229.PubMedGoogle Scholar
  28. Ikemoto, S., Kato, K., and Komagata, K., 1978a, Cellular fatty acid composition in methanol-utilizing bacteria, J. Gen. Appl. Microbiol. 24:41.CrossRefGoogle Scholar
  29. Ikemoto, S., Kuraishi, H., Komagata, K., Azuma, R., Suto, T., and Murooka, H., 1978b, Cellular fatty acid composition in Pseudomonas species, J. Gen. Appl. Microbiol. 24:199.CrossRefGoogle Scholar
  30. Kaneda, T., 1977, Fatty acids of the genus Bacillus: An example of branched-chain preference, Bacteriol. Rev. 41:391.PubMedGoogle Scholar
  31. Kass, L. R., Brock, D. J. H., and Bloch, K., 1967, β-Hydroxydecanoyl thioester dehydrase. I. Purification and properties, J. Biol. Chem. 242:4418.PubMedGoogle Scholar
  32. Kates, M., 1964, Bacterial lipids, Adv. Lipid Res. 2:17.PubMedGoogle Scholar
  33. Kawaguchi, A., and Okuda, S., 1977, Fatty acid synthetase from Brevibacterium ammoniagenes: Formation of monounsaturated fatty acids by a multienzyme complex, Proc. Natl. Acad. Sci. USA 74:3180.PubMedCrossRefGoogle Scholar
  34. Kawaguchi, A., Seyama, Y., Sasaki, K., Okuda, S., and Yamakawa, T., 1979, Thermal regulation of fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 85:865.PubMedGoogle Scholar
  35. Kawaguchi, A., Arai, K., Seyama, Y., Yamakawa, T., and Okuda, S., 1980, Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 88:303.PubMedGoogle Scholar
  36. Keddle, R. M., and Cure, G. L., 1977, The cell wall composition and distribution of free mycolic acids in named strains of coryneform bacteria and in isolates from various natural sources, J. Appl. Bacteriol. 42:229.CrossRefGoogle Scholar
  37. Kito, M., Ishinaga, M., Nishihara, M., Kato, M., Sawada, S., and Hata, T., 1975, Metabolism of the phosphatidylglycerol molecular species in Escherichia coli, Eur. J. Biochem. 54:55.PubMedCrossRefGoogle Scholar
  38. Knoche, H. W., and Koths, K. E., 1973, Characterization of a fatty acid synthetase from Corynebacterium diphtheriae, J. Biol. Chem. 248:3517.PubMedGoogle Scholar
  39. Komura, I., Yamada, K., Otsuka, S., and Komagata, K., 1975, Taxonomic significance of phospholipids in coryneform and nocardioform bacteria, J. Gen. Appl. Microbiol. 21:251.CrossRefGoogle Scholar
  40. Kühn, L., Castorph, H., and Schweizer, E., 1972, Gene linkage and gene-enzyme relations in the fatty-acid-synthetase system of Saccharomyces cerevisiae, Eur. J. Biochem. 24:492.PubMedCrossRefGoogle Scholar
  41. Lennarz, W. J., 1966, Lipid metabolism in the bacteria, Adv. Lipid Res. 4:175.PubMedGoogle Scholar
  42. Lennarz, W. J., Light, R. J., and Bloch, K., 1962, A fatty acid synthetase from E. coli, Proc. Natl. Acad. Sci. USA 48:840.PubMedCrossRefGoogle Scholar
  43. Lynen, F., 1980, On the structure of fatty acid synthetase of yeast, Eur. J. Biochem. 112:431.PubMedCrossRefGoogle Scholar
  44. McElhaney, R. N., 1974, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.PubMedCrossRefGoogle Scholar
  45. Marr, A. G., and Ingraham, J. L., 1962, Effect of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol. 84:1260.PubMedGoogle Scholar
  46. Miller, N. G. A., Hill, M. W., and Smith, M. W., 1976, Positional and species analysis of membrane phospholipids extracted from goldfish adapted to different environmental temperatures, Biochim. Biophys. Acta 455:644.PubMedCrossRefGoogle Scholar
  47. Minnikin, D. E., Goodfellow, M., and Collins, M. D., 1978, Lipid composition in the classification and identification of coryneform and related taxa, in: Coryneform Bacteria (J. Bousfield and A. G. Callely, eds.), pp. 85–160, Academic Press, New York.Google Scholar
  48. Okuyama, H., Yamada, K., Kameyama, Y., Ikezawa, H., Akamatsu, Y., and Nojima, S., 1977, Regulation of membrane lipid synthesis in Escherichia coli after shifts in temperature, Biochemistry 16:2668.PubMedCrossRefGoogle Scholar
  49. Schleifer, R. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36:407.PubMedGoogle Scholar
  50. Schroepfer, G. J., Jr., and Bloch, K., 1965, The stereospecific conversion of stearic acid to oleic acid, J. Biol. Chem. 240:54.PubMedGoogle Scholar
  51. Schweizer, E., and Boiling, H., 1970, A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis, Proc. Natl. Acad. Sci. USA 67:660.PubMedCrossRefGoogle Scholar
  52. Schweizer, E., Kniep, B., Castorph, H., and Holzner, U., 1973, Pantetheine-free mutants of the yeast fatty-acid-synthetase complex, Eur. J. Biochem. 39:353.PubMedCrossRefGoogle Scholar
  53. Seyama, Y., Kasama, T., Yamakawa, T., Kawaguchi, A., and Okuda, S., 1977, Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 81:1167.PubMedGoogle Scholar
  54. Seyama, Y., Kawaguchi, A., Okuda, S., and Yamakawa, T., 1978, New assay method for fatty acid synthetase with mass fragmentography, J. Biochem. 84:1309.PubMedGoogle Scholar
  55. Sinensky, M., 1971, Temperature control of phospholipid biosynthesis in Escherichia coli, J. Bacteriol. 106:449.PubMedGoogle Scholar
  56. Skyring, G. W., and Quadling, C, 1970, Soil bacteria: A principal component analysis and guanine-cytosine contents of some arthrobacter-coryneform soil isolates and of some named cultures, Can. J. Microbiol. 16:95.PubMedCrossRefGoogle Scholar
  57. Slack, C. R., and Roughan, P. G., 1978, Rapid temperature-induced changes in fatty acid composition of certain lipids in developing linseed and soya-bean cotyledons, Biochem. J. 170:437.PubMedGoogle Scholar
  58. Stackebrandt, E., and Fiedler, F., 1979, DNA-DNA homology studies among strains of Arthrobacter and Brevibacterium, Arch. Microbiol. 120:289.PubMedCrossRefGoogle Scholar
  59. Stackebrandt, E., and Kandier, O., 1979, Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal of seven neotype strains, Int. J. Syst. Bacteriol. 29:273.CrossRefGoogle Scholar
  60. Stoops, J. K., and Wakil, S. J., 1981a, Animal fatty acid synthetase: A novel arrangement of the β-ketoacyl synthetase sites comprising domains of the two subunits, J. Biol. Chem. 256:5128.PubMedGoogle Scholar
  61. Stoops, J. K., and Wakil, S. J., 1981b, The yeast fatty acid synthetase: Structure-function relationship and the role of the active cysteine-SH and pantetheine-SH, J. Biol. Chem. 256:8364.PubMedGoogle Scholar
  62. Stoops, J. K., Arslanian, M. J., Chalmers, J. H., Jr., Joshi, V. C, and Wakil, S. J., 1977, Fatty acid synthetase complexes, Bioorg. Chem. 1:339.Google Scholar
  63. Sumper, M., Oesterhelt, D., Riepertinger, C, and Lynen, F., 1969, Die Synthese verschiedener Carbonsäuren durch den Multienzymekomplex der Fettsäuresynthese aus Hefe und Erklärung ihrer Bildung, Eur. J. Biochem. 10:377.PubMedCrossRefGoogle Scholar
  64. Suzuki, K., and Komagata, K., 1983, Taxonomic significance of cellular fatty acid composition in coryneform bacteria, Int. J. Syst. Bacteriol. 33:188.CrossRefGoogle Scholar
  65. Suzuki, K., Saito, K., Kawaguchi, A., Okuda, S., and Komagata, K., 1981a, Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains, J. Gen. Appl. Microbiol. 27:261.CrossRefGoogle Scholar
  66. Suzuki, K., Kaneko, T., and Komagata, K., 1981b, Deoxyribonucleic acid homologies among coryneform bacteria, Int. J. Syst. Bacteriol. 31:131.CrossRefGoogle Scholar
  67. Suzuki, K., Kawaguchi, A., Saito, K., Okuda, S., and Komagata, K., 1982, Taxonomic significance of the position of double bonds of unsaturated fatty acids in corynebacteria, J. Gen. Appl. Microbiol. 28:409.CrossRefGoogle Scholar
  68. Uchida, K., and Aida, K., 1977, Acyl type of bacterial cell wall: Its simple identification by a colorimetric method, J. Gen. Appl. Microbiol. 23:249.CrossRefGoogle Scholar
  69. Uchida, K., and Aida, K., 1979, Taxonomic significance of cell-wall acyl type in Corynebacterium-Mycobacterium-Nocardia group by a glycolate test, J. Gen. Appl. Microbiol. 25:169.CrossRefGoogle Scholar
  70. Van den Bosch, H., Willamson, J. R., and Vagelos, P. R., 1970, Localization of acyl carrier protein in Escherichia coli, Nature (London) 228:338.CrossRefGoogle Scholar
  71. Wood, W. I., Peterson, D. O., and Bloch, K., 1978, Subunit structure of Mycobacterium smegmatis fatty acid synthetase, J. Biol. Chem. 253:2650.PubMedGoogle Scholar
  72. Yamada, K., and Komagata, K., 1970a, Taxonomic studies on coryneform bacteria. II. Principal amino acids in the cell wall and their taxonomic significance, J. Gen. Appl. Microbiol. 16:103.CrossRefGoogle Scholar
  73. Yamada, K., and Komagata, K., 1970b, Taxonomic studies on coryneform bacteria III. DNA base composition of coryneform bacteria, J. Gen. Appl. Microbiol. 16:215.CrossRefGoogle Scholar
  74. Yamada, Y., Inoue, G., Tahara, Y., and Kondo, K., 1976, The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms, J. Gen. Appl. Microbiol. 22:203.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Akihiko Kawaguchi
    • 1
  • Yousuke Seyama
    • 1
  1. 1.Institute of Applied Microbiology and Department of BiochemistryThe University of TokyoTokyoJapan

Personalised recommendations