The Relationship between Membrane Lipid Fluidity and Phase State and the Ability of Bacteria and Mycoplasmas to Grow and Survive at Various Temperatures

  • Ronald N. McElhaney
Part of the Biomembranes book series (B, volume 12)


Many of the contributions in this volume are concerned with the physical measurement and biochemical regulation of membrane lipid fluidity in prokaryotic microorganisms. This contribution is primarily concerned with the biological function of such regulatory mechanisms and with the physiological consequences of their absence or impairment. In the first part of this essay, some brief comments on the concept of fluidity as applied to membranes are offered and a short, critical analysis of the physical techniques available for the measurement of lipid fluidity and phase state is given. Next, a summary and critical discussion of what we currently know about the relationship between membrane lipid fluidity and phase state and the ability of bacteria and mycoplasmas to grow at various temperatures are presented. Related work on the influence of the fatty acid composition of the lipids of bacterial membranes on their ability to survive exposure to extremes of temperature is then reviewed. Finally, the possible molecular bases for the observed relationships between membrane lipid fluidity and phase state and the growth and survival of prokaryotic microorganisms are discussed, as is the biological significance of homeoviscous or homeophasic regulatory mechanisms in bacteria and mycoplasmas.


Electron Spin Resonance Fatty Acid Composition Membrane Lipid Growth Temperature Phase Transition Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, C. A., and Card, G. L., 1980, The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica, Biochim. Biophys. Acta 602:469.PubMedCrossRefGoogle Scholar
  2. Akutsu, H., Akamatsu, Y., Shinbo, T., Uehara, K., Takahashi, K. and Kyogoku, Y., 1980, Evidence for phase separation in the membrane of an osmotically stabilized fatty acid auxotroph of E. coli and its biological significance, Biochim. Biophys. Acta 598:437.PubMedCrossRefGoogle Scholar
  3. Amelunxen, R. E., and Murdock, A. L., 1978, Microbial life at high temperatures: Mechanisms and molecular aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 217–278, Academic Press, New York.Google Scholar
  4. Ashe, G. B., and Steim, J. M., 1971, Membrane transitions in gram-positive bacteria, Biochim. Biophys. Acta 233:810.PubMedCrossRefGoogle Scholar
  5. Baldassare, J. J., Rhinehart, K. H., and Silbert, D. F., 1976, Modification of membrane lipids: Physical properties in relation to fatty acid structure, Biochemistry 15:2986.PubMedCrossRefGoogle Scholar
  6. Baldassare, J. J., Brenckle, G. M., Hoffman, M., and Silbert, D. F., 1977, Modification of membrane lipid: Functional properties of membrane in relation to fatty acid structure, J. Biol. Chem. 252:8797.PubMedGoogle Scholar
  7. Beuchat, L. R., 1978, Injury and repair of gram-negative bacteria, with special consideration of the involvement of the cytoplasmic membrane, Adv. Appl. Microbiol. 23:219.PubMedCrossRefGoogle Scholar
  8. Beuchat, L. R., and Worthington, R. E., 1976, Relationship between heat resistance and phos-pholipid fatty acid composition of Vibrio parahaemolyticus, Appl. Environ. Microbiol. 31:389.PubMedGoogle Scholar
  9. Biegel, C. M., and Gould, J. M., 1981, Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes, Biochemistry 20:3474.PubMedCrossRefGoogle Scholar
  10. Blok, M. C., van der Neut-Kok, E. C. M., van Deenen, L. L. M., and de Gier, J., 1975, The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes, Biochim. Biophys. Acta 406:187.PubMedCrossRefGoogle Scholar
  11. Blume, A., Dreher, F., and Poralla, K., 1978, The influence of branched-chain and ω-alicyclic fatty acids on the transition temperature of Bacillus subtilis lipids, Biochim. Biophys. Acta 512:489.PubMedCrossRefGoogle Scholar
  12. Britten, R. J., and McClure, F. T., 1962, The amino acid pool in Escherichia coli, Bacteriol. Rev. 26:292.PubMedGoogle Scholar
  13. Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time dependent fluorescence depolarization of diphenylhexatriene in dimyristoyl-lecithin and the determination of “microviscosity,” J. Biol. Chem. 252:2163.PubMedGoogle Scholar
  14. Clement, N. R., and Gould, J. M., 1981, Pyranine (8-hydroxy-1,3,6-pyrene-trisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry 20:1534.PubMedCrossRefGoogle Scholar
  15. Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Biol. Chem. 252:7500.PubMedGoogle Scholar
  16. Davis, J. H., Nichol, C. P., Weeks, G., and Bloom, M., 1979, Study of the cytoplasmic and outer membranes of Escherichia coli by deuterium magnetic resonance. Biochemistry 18:2103.PubMedCrossRefGoogle Scholar
  17. Davis, M. B., and Silbert, D. F., 1974, Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12, Biochim. Biophys. Acta 373:224.PubMedCrossRefGoogle Scholar
  18. de Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N., and van Beek, W. P., 1971, On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes, Biochim. Biophys. Acta 233:610.PubMedCrossRefGoogle Scholar
  19. de Kruyff, B., de Greef, W. J., van Eyk, R. V. W., Demel, R. A., and van Deenen, L. L. M., 1973, The effect of different fatty acid and sterol composition on the erythritol flux through the cell membrane of Acholeplasma laidlawii, Biochim. Biophys. Acta 298:479.PubMedCrossRefGoogle Scholar
  20. Demel, R. A., and de Kruyff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109.PubMedGoogle Scholar
  21. Devaux, P., and McConnell, H. M., 1972, Lateral diffusion in spin-labelled phosphatidylcholine multilayers, J. Am. Chem. Soc. 94:4475.PubMedCrossRefGoogle Scholar
  22. Elliker, P. R., and Frazier, W. C, 1938, Influence of time and temperature of incubation on heat resistance of Escherichia coli, J. Bacteriol. 36:83.PubMedGoogle Scholar
  23. Esser, A. F., and Souza, K. A. 1974, Correlation between thermal death and membrane fluidity in Bacillus stearothermophilus, Proc. Natl. Acad. Sci. USA 71:4111.PubMedCrossRefGoogle Scholar
  24. Farrell, J., and Rose, A. H., 1968, Cold shock in a mesophilic and a psychrophilic pseudomonad, J. Gen. Microbiol. 50:429.PubMedGoogle Scholar
  25. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1979, Structure of Escherichia coli membranes: Phospholipid conformation in model membranes and cells as studied by deuterium magnetic resonance, Biochemistry 18:5605.CrossRefGoogle Scholar
  26. Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1980, Structure of Escherichia coli membranes: Fatty acyl chain order parameters in inner and outer membranes and derived liposomes, Biochemistry 19:1638.CrossRefGoogle Scholar
  27. Gorrill, R. H., and McNeil, E. M., 1960, The effect of cold diluent on the viable count of Pseudomonas pyocyanea, J. Gen Microbiol. 22:437.PubMedGoogle Scholar
  28. Gutknecht, J., and Walter, A., 1981, Transport of protons and hydrochloric acid through lipid bilayer membranes, Biochim. Biophys. Acta 641:183.PubMedCrossRefGoogle Scholar
  29. Haest, C. W. M., de Gier, J., van Es, G. A., Verkleij, A. J., and van Deenen, L. L. M., 1972, Fragility of the permeability barrier of Escherichia coli, Biochim. Biophys. Acta 288:43.PubMedCrossRefGoogle Scholar
  30. Haest, C. W. M., Verkleij, A. J., de Gier, J., Scheek, R., Ververgaert, P. H. J., and van Deenen, L. L. M., 1974, The effect of lipid phase transitions on the architecture of bacterial membranes, Biochim. Biophys. Acta 356:17.PubMedCrossRefGoogle Scholar
  31. Hansen, E. W., 1971, Correlation of fatty acid composition with thermal resistance of Escherichia coli, Dan. Tidsskr. Farm. 45:339.PubMedGoogle Scholar
  32. Hansen, E. W., and Skadhauge, K., 1971, The influence of growth temperature on the thermal resistance of E. coli, Dan. Tidsskr. Farm. 45:24.PubMedGoogle Scholar
  33. Hansen, N.-M., and Riemann, H., 1963, Factors affecting the heat resistance of nonsporing organisms, J. Appl. Bacteriol. 26:314.CrossRefGoogle Scholar
  34. Harold, F. M., 1977, Membranes and energy transduction in bacteria, in: Current Topics in Bioenergetics, Vol. 7 (D. R. Sanadi, ed.), pp. 83–147, Academic Press, New York.Google Scholar
  35. Hildebrand, K., and Nicolau, C, 1979, Nanosecond fluorescence anisotrophy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes, Biochim. Biophys. Acta 553:365.CrossRefGoogle Scholar
  36. Inniss, W. E., and Ingraham, J. L., 1978, Microbial life at low temperatures: Mechanisms and molecular aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 73–104, Academic Press, New York.Google Scholar
  37. Jackson, M. B., and Cronan, J. E., Jr., 1978, An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli, Biochim. Biophys. Acta 512:472.PubMedCrossRefGoogle Scholar
  38. Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotrophy data, Proc. Natl. Acad. Sci. USA 76:6361.PubMedCrossRefGoogle Scholar
  39. Janoff, A. S., Haug, A., and McGroarty, E. J., 1979, Relationship of growth temperature and thermotropic lipid phase changes in cytoplasmic and outer membranes from Escherichia coli, Biochim. Biophys. Acta 555:56.PubMedCrossRefGoogle Scholar
  40. Janoff, A. S., Gupte, S., and McGroarty, E. J., 1980a, Correlation between temperature range of growth and structural transitions in membranes and lipids of Escherichia coli K12, Biochim. Biophys. Acta 598:641.PubMedCrossRefGoogle Scholar
  41. Janoff, A. S., Haug, A., and McGroarty, E. J., 1980b, Anesthetics alter outer membrane architecture and temperature range of growth of Escherichia coli K12, Biochem. Biophys. Res. Commun. 95:1364.PubMedCrossRefGoogle Scholar
  42. Jansen, G. J., Daniel, R. M., Nicholson, B. K., and Morgan, H. W., 1982, Membrane phase transitions and succinate oxidase activity in an extremely thermophilic bacterium, Biochim. Biophys. Acta 685:191.CrossRefGoogle Scholar
  43. Kanehisa, M. I., and Tsong, T. Y., 1978, Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers, J. Am. Chem. Soc. 100:424.CrossRefGoogle Scholar
  44. Katsui, N., Tsuchido, T., Takano, M., and Shibasaki, I., 1981, Effect of preincubation temperature on the heat resistance of Escherichia coli having different fatty acid compositions, J. Gen. Microbiol. 122:357.PubMedGoogle Scholar
  45. Kawada, N., and Nosoh, Y, 1981, Relation of Arrhenius discontinuities of NADH dehydrog-enase to change in membrane lipid fluidity of Bacillus caldotenax, FEBS Lett. 124:15.PubMedCrossRefGoogle Scholar
  46. Kawato, S., Kinosita, K., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16:2319.PubMedCrossRefGoogle Scholar
  47. Lawaczeck, R., Blackman, R., and Kainosho, M., 1977, Ion permeation across the bilayer of annealed phosphatidylcholine vesicles at elevated temperatures, Biochim. Biophys. Acta 468:441.Google Scholar
  48. Leder, I. G., 1972, Interrelated effects of cold shock and osmotic pressure on the permeability of the Escherichia coli membrane to permease accumulated substrates, J. Bacteriol. 111:211.PubMedGoogle Scholar
  49. Le Grimellec, C., and Leblanc, G., 1978, Effect of membrane cholesterol on potassium transport in Mycoplasma mycoides var. capri (PG3), Biochim. Biophys. Acta 514:152.PubMedCrossRefGoogle Scholar
  50. Le Grimellec, C., Cardinal, J., Giocondi, M.-C, and Carriere, S., 1981, Control of membrane lipids in Mycoplasma gallisepticum: Effect on lipid order, J. Bacteriol. 146:155.PubMedGoogle Scholar
  51. McElhaney, R. N., 1974a, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.PubMedCrossRefGoogle Scholar
  52. McElhaney, R. N., 1974b, The effect of membrane-lipid phase transitions on membrane structure and on the growth of Acholeplasma laidlawii B, J. Supramol. Struct. 2:617.PubMedCrossRefGoogle Scholar
  53. McElhaney, R. N., 1982a, The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes, Chem. Phys. Lipids 30:229.PubMedCrossRefGoogle Scholar
  54. McElhaney, R. N., 1982b, Effects of membrane lipids on transport and enzymic activities in: Current Topics in Membranes and Transport, Vol. 17 (S. Razin and S. Rottem, eds.), pp. 317–380, Academic Press, New York.Google Scholar
  55. McElhaney, R. N., and Souza, K. A., 1976, The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus, Biochim. Biophys. Acta 443:348.PubMedCrossRefGoogle Scholar
  56. McElhaney, R. N., de Gier, J., and van der Neut-Kok, E. C. M., 1973, The effect of alterations in fatty acid composition and cholesterol content on the nonelectrolyte permeability of Acholeplasma laidlawii B cells and derived liposomes, Biochim. Biophys. Acta 298:500.PubMedCrossRefGoogle Scholar
  57. McGarrity, J. T., and Armstrong, J. B., 1981, The effect of temperature and other growth conditions on the fatty acid composition of Escherichia coli, Can. J. Microbiol. 27:835.PubMedCrossRefGoogle Scholar
  58. Marsh, D., Watts, A., and Knowles, P. F., 1976, Evidence for phase boundary lipid: Permeability of Tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition, Biochemistry 15:3570.PubMedCrossRefGoogle Scholar
  59. Melchior, D. L., and Steim, J. M., 1976, Thermotropic transitions in biomembranes, Annu. Rev. Biophys. Bioeng. 5:205.PubMedCrossRefGoogle Scholar
  60. Melchior, D. L., and Steim, J. M., 1979, Lipid-associated thermal events in biomembranes, in: Progress in Surface and Membrane Science, Vol. 13 (D. A. Cadenhead and J. F. Danielli, eds.), pp. 211–296, Academic Press, New York.Google Scholar
  61. Mely-Goubert, B., and Freedman, M. H., 1980, Lipid fluidity and membrane protein monitoring using 1,6-diphenyl-1,3,5-hexatriene, Biochim. Biophys. Acta 601:315.PubMedCrossRefGoogle Scholar
  62. Nakayama, H., Mitsui, T., Nishihara, M., and Kito, M., 1980, Relation between growth temperature of E. coli and phase transition temperatures of its cytoplasmic and outer membranes, Biochim. Biophys. Acta 601:1.PubMedCrossRefGoogle Scholar
  63. Nichol, C. P., Davis, J. H., Weeks, G., and Bloom, M., 1980, Quantitative study of the fluidity of Escherichia coli membranes using deuterium magnetic resonance, Biochemistry 19:451.PubMedCrossRefGoogle Scholar
  64. Nicholls, P., and Miller, N., 1974, Chloride diffusion from liposomes, Biochim. Biophys. Acta 356:184.PubMedCrossRefGoogle Scholar
  65. Nichols, J. W., and Deamer, D. W., 1980, Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique, Proc. Natl. Acad. Sci. USA 77:2038.PubMedCrossRefGoogle Scholar
  66. Nichols, J. W., Hill, M. W., Bangham, A. D., and Deamer, D. W., 1980, Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe, 9-aminoacridine, Biochim. Biophys. Acta 596:393.PubMedCrossRefGoogle Scholar
  67. Novotny, C. P., and Englesberg, E., 1966, The L-arabinose permease system in Escherichia coli B/r, Biochim. Biophys. Acta 117:217.PubMedCrossRefGoogle Scholar
  68. Nozaki, Y., and Tanford, C, 1981, Proton and hydroxide ion permeability of phospholipid vesicles, Proc. Natl. Acad. Sci. USA 78:4324.PubMedCrossRefGoogle Scholar
  69. Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: Heterogeneity and role of cholesterol, FEBS Lett. 23:285.PubMedCrossRefGoogle Scholar
  70. Op den Kamp, J. A. F., Kauerz, M. T., and van Deenen, L. L. M., 1975, Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states, Biochim. Biophys. Acta 406:169.PubMedCrossRefGoogle Scholar
  71. Overath, P., Schairer, H. U., and Stoffel, W., 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 67:606.PubMedCrossRefGoogle Scholar
  72. Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330.PubMedCrossRefGoogle Scholar
  73. Paton, J. C., McMurchie, E. J., May, B. K., and Elliott, W. H., 1978, Effect of growth temperature on membrane fatty acid composition and susceptibility to cold shock of Bacillus amyloliquefaciens, J. Bacteriol. 135:754.Google Scholar
  74. Pluschke, G., and Overath, P., 1981, Function of phospholipids in Escherichia coli: Influence of changes in polar head group composition on the lipid phase transition and characterization of a mutant containing only saturated phospholipid acyl chains, J. Biol. Chem. 256:3207.PubMedGoogle Scholar
  75. Ring, K., 1965, The effect of low temperatures on permeability in Streptomyces hydrogenans, Biochem. Biophys. Res. Commun. 19:576.PubMedCrossRefGoogle Scholar
  76. Roberts, R. T., 1973, Measurement of the diffusion coefficient in the concentrated phases of the soap-water system by nuclear magnetic resonance spectroscopy, Nature (London) 242:348.CrossRefGoogle Scholar
  77. Rottem, S., 1981, Cholesterol is required to prevent crystallization of Mycoplasma arginini phospholipids at physiological temperatures, FEBS Lett. 133:161.PubMedCrossRefGoogle Scholar
  78. Rottem, S., Yashouv, J., Ne’eman, Z., and Razin, S., 1973a, Cholesterol in Mycoplasma membranes: Composition, ultrastructure and biological properties of membranes from Mycoplasma mycoides var. capri cells adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:495.PubMedCrossRefGoogle Scholar
  79. Rottem, S., Cirillo, V. P., de Kruyff, B., Shinitzky, M., and Razin, S., 1973b, Cholesterol in mycoplasma membranes: Correlation of enzymic and transport activities with physical state of lipids of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:509.PubMedCrossRefGoogle Scholar
  80. Saito, Y., and McElhaney, R. N., 1977, Membrane lipid biosynthesis in Acholeplasma laidlawii B: Incorporation of exogenous fatty acids into membrane glyco-and phospholipids by growing cells, J. Bacteriol. 132:485.PubMedGoogle Scholar
  81. Saito, Y., Silvius, J. R., and McElhaney, R. N., 1977, Membrane lipid biosynthesis in Acholeplasma laidlawii B: De navo biosynthesis of saturated fatty acids by growing cells, J. Bacteriol. 132:497.PubMedGoogle Scholar
  82. Saito, Y., Silvius, J. R., and McElhaney, R. N., 1978, Membrane lipid biosynthesis in Acholeplasma laidlawii B: Elongation of medium and long-chain exogenous fatty acids in growing cells, J. Bacteriol. 133:66.PubMedGoogle Scholar
  83. Sandermann, H., 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta 515:209.PubMedGoogle Scholar
  84. Sanders, R. L., and May, B. K., 1975, Evidence for extrusion of unfolded extracellular enzyme polypeptide chains through membranes of Bacillus amyloliquefaciens, J. Bacteriol. 123:806.PubMedGoogle Scholar
  85. Schindler, H., and Seelig, J., 1973, EPR spectra of spin labels in lipid bilayers, J. Chem. Phys. 59:1841.CrossRefGoogle Scholar
  86. Schreier, S., Polnaszek, C. F., and Smith, I. C. P., 1978, Spin labels in membranes: Problems in practice, Biochim. Biophys. Acta 515:375.Google Scholar
  87. Seelig, A., and Seelig, J., 1974, The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry 13:4839.PubMedCrossRefGoogle Scholar
  88. Seelig, J., and Niederberger, W., 1974, Two pictures of a lipid bilayer: A comparison between deuterium label and spin-label experiments, Biochemistry 13:1585.PubMedCrossRefGoogle Scholar
  89. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.PubMedCrossRefGoogle Scholar
  90. Shechter, E., Gulik-Krzywicki, T., and Kabach, H. R., 1972, Correlations between fluorescence, X-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli, Biochim. Biophys. Acta 274:466.PubMedCrossRefGoogle Scholar
  91. Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367.PubMedGoogle Scholar
  92. Silvius, J. R., and McElhaney, R. N., 1978, Lipid compositional manipulation in Acholeplasma laidlawii B: Effect of exogenous fatty acids on fatty acid composition and cell growth when endogenous fatty acid production is inhibited. Can. J. Biochem. 56:462.PubMedCrossRefGoogle Scholar
  93. Silvius, J. R., and McElhaney, R. N., 1980a, Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes, J. Theor. Biol. 88:135.CrossRefGoogle Scholar
  94. Silvius, J. R., and McElhaney, R. N., 1980b, Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B, Proc. Natl. Acad. Sci. USA 77:1255.PubMedCrossRefGoogle Scholar
  95. Silvius, J. R., Mak, N., and McElhaney, R. N., 1980a, Lipid and protein composition and thermotropic phase transitions in fatty acid-homogeneous membranes of Acholeplasma laidlawii B, Biochim. Biophys. Acta 597:199.PubMedCrossRefGoogle Scholar
  96. Silvius, J. R., Mak, N., and McElhaney, R. N., 1980b, Why do prokaryotes regulate membrane lipid fluidity?, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 213–222, Humana Press, Clifton, N.J.Google Scholar
  97. Sinensky, M., 1974, Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 71:522.PubMedCrossRefGoogle Scholar
  98. Smeaton, J. R., and Elliott, W. H., 1967, Selective release of ribonuclease-inhibitor from Bacillus subtilis cells by cold shock treatment, Biochem. Biophys. Res. Commun. 26:75.PubMedCrossRefGoogle Scholar
  99. Steim, J. M., 1970, Phase transitions in model and biological membranes, in: Liquid Crystals and Ordered Fluids (J. F. Johnson and R. S. Porter, eds.), pp. 1–11, Plenum Press, New York.Google Scholar
  100. Steim, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. N., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Natl. Acad. Sci. USA 63:104.PubMedCrossRefGoogle Scholar
  101. Strange, R. E., and Dark, F. A., 1962, Effect of chilling on Aerobacter aerogenes in aqueous suspension, J. Gen. Microbiol. 29:719.PubMedGoogle Scholar
  102. Taylor, M. G., and Smith, I. C. P., 1980, The fidelity of response by nitroxide spin probes to changes in membrane organization: The condensing effect of cholesterol, Biochim. Biophys. Acta 599:140.PubMedCrossRefGoogle Scholar
  103. Thilo, L., and Overath, P., 1976, Randomization of membrane lipids in relation to transport system assembly in Escherichia coli, Biochemistry 15:328.PubMedCrossRefGoogle Scholar
  104. Thilo, L., Träuble, H., and Overath, P., 1977, Mechanistic interpretation of the influence of lipid phase transitions on transport functions, Biochemistry 16:1283.PubMedCrossRefGoogle Scholar
  105. Träuble, H., and Sackman, E., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transition, J. Am. Chem. Soc. 94:4499.PubMedCrossRefGoogle Scholar
  106. Tsien, H., Panos, C., Shockman, G. D., and Higgins, M. L., 1980, Evidence that Streptococcus mutans constructs its membrane with excess fluidity for survival at suboptimal temperatures, J. Gen. Microbiol. 121:105.PubMedGoogle Scholar
  107. Tsukamoto, Y., Ueki, T., Mitsui, T., Ono, T.-A., and Murata, N., 1980, Relationship between growth temperature of Anacystis nidulans and phase transition temperature of its thylakoid membranes, Biochim. Biophys. Acta 602:673.PubMedCrossRefGoogle Scholar
  108. Uehara, K., Akutsu, H., Kyogoku, Y., and Akamatsu, Y., 1977, Phase transitions of phos-pholipid bilayers from an unsaturated fatty acid auxotroph of Escherichia coli, Biochim. Biophys. Acta 466:393.PubMedCrossRefGoogle Scholar
  109. Wakayama, N., 1978, Membrane properties of an extreme thermophile. II. Membrane functions underlying leucine transport and their relation with thermotropic phase transitions, J. Biochem. 83:1693.PubMedGoogle Scholar
  110. Wakayama, N., and Oshima, T., 1978, Membrane properties of an extreme thermophile. I. Detection of the phase transition and its dependence on growth temperatures, J. Biochem. 83:1687.PubMedGoogle Scholar
  111. Wu, S. H., and McConnell, H. M., 1973, Lateral phase separations and perpendicular transport in membranes, Biochem. Biophys. Res. Commun. 55:484.PubMedCrossRefGoogle Scholar
  112. Yatvin, M. B., 1977, The influence of membrane lipid composition and procaine on hyperthermic death of cells, Int. J. Radiat. Biol. 32:513.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ronald N. McElhaney
    • 1
  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations