Skip to main content

The Relationship between Membrane Lipid Fluidity and Phase State and the Ability of Bacteria and Mycoplasmas to Grow and Survive at Various Temperatures

  • Chapter
Membrane Fluidity

Part of the book series: Biomembranes ((B,volume 12))

Abstract

Many of the contributions in this volume are concerned with the physical measurement and biochemical regulation of membrane lipid fluidity in prokaryotic microorganisms. This contribution is primarily concerned with the biological function of such regulatory mechanisms and with the physiological consequences of their absence or impairment. In the first part of this essay, some brief comments on the concept of fluidity as applied to membranes are offered and a short, critical analysis of the physical techniques available for the measurement of lipid fluidity and phase state is given. Next, a summary and critical discussion of what we currently know about the relationship between membrane lipid fluidity and phase state and the ability of bacteria and mycoplasmas to grow at various temperatures are presented. Related work on the influence of the fatty acid composition of the lipids of bacterial membranes on their ability to survive exposure to extremes of temperature is then reviewed. Finally, the possible molecular bases for the observed relationships between membrane lipid fluidity and phase state and the growth and survival of prokaryotic microorganisms are discussed, as is the biological significance of homeoviscous or homeophasic regulatory mechanisms in bacteria and mycoplasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, C. A., and Card, G. L., 1980, The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica, Biochim. Biophys. Acta 602:469.

    Article  PubMed  CAS  Google Scholar 

  • Akutsu, H., Akamatsu, Y., Shinbo, T., Uehara, K., Takahashi, K. and Kyogoku, Y., 1980, Evidence for phase separation in the membrane of an osmotically stabilized fatty acid auxotroph of E. coli and its biological significance, Biochim. Biophys. Acta 598:437.

    Article  PubMed  CAS  Google Scholar 

  • Amelunxen, R. E., and Murdock, A. L., 1978, Microbial life at high temperatures: Mechanisms and molecular aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 217–278, Academic Press, New York.

    Google Scholar 

  • Ashe, G. B., and Steim, J. M., 1971, Membrane transitions in gram-positive bacteria, Biochim. Biophys. Acta 233:810.

    Article  PubMed  CAS  Google Scholar 

  • Baldassare, J. J., Rhinehart, K. H., and Silbert, D. F., 1976, Modification of membrane lipids: Physical properties in relation to fatty acid structure, Biochemistry 15:2986.

    Article  PubMed  CAS  Google Scholar 

  • Baldassare, J. J., Brenckle, G. M., Hoffman, M., and Silbert, D. F., 1977, Modification of membrane lipid: Functional properties of membrane in relation to fatty acid structure, J. Biol. Chem. 252:8797.

    PubMed  CAS  Google Scholar 

  • Beuchat, L. R., 1978, Injury and repair of gram-negative bacteria, with special consideration of the involvement of the cytoplasmic membrane, Adv. Appl. Microbiol. 23:219.

    Article  PubMed  CAS  Google Scholar 

  • Beuchat, L. R., and Worthington, R. E., 1976, Relationship between heat resistance and phos-pholipid fatty acid composition of Vibrio parahaemolyticus, Appl. Environ. Microbiol. 31:389.

    PubMed  CAS  Google Scholar 

  • Biegel, C. M., and Gould, J. M., 1981, Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes, Biochemistry 20:3474.

    Article  PubMed  CAS  Google Scholar 

  • Blok, M. C., van der Neut-Kok, E. C. M., van Deenen, L. L. M., and de Gier, J., 1975, The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes, Biochim. Biophys. Acta 406:187.

    Article  PubMed  CAS  Google Scholar 

  • Blume, A., Dreher, F., and Poralla, K., 1978, The influence of branched-chain and ω-alicyclic fatty acids on the transition temperature of Bacillus subtilis lipids, Biochim. Biophys. Acta 512:489.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R. J., and McClure, F. T., 1962, The amino acid pool in Escherichia coli, Bacteriol. Rev. 26:292.

    PubMed  CAS  Google Scholar 

  • Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time dependent fluorescence depolarization of diphenylhexatriene in dimyristoyl-lecithin and the determination of “microviscosity,” J. Biol. Chem. 252:2163.

    PubMed  CAS  Google Scholar 

  • Clement, N. R., and Gould, J. M., 1981, Pyranine (8-hydroxy-1,3,6-pyrene-trisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry 20:1534.

    Article  PubMed  CAS  Google Scholar 

  • Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Biol. Chem. 252:7500.

    PubMed  CAS  Google Scholar 

  • Davis, J. H., Nichol, C. P., Weeks, G., and Bloom, M., 1979, Study of the cytoplasmic and outer membranes of Escherichia coli by deuterium magnetic resonance. Biochemistry 18:2103.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. B., and Silbert, D. F., 1974, Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12, Biochim. Biophys. Acta 373:224.

    Article  PubMed  CAS  Google Scholar 

  • de Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N., and van Beek, W. P., 1971, On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes, Biochim. Biophys. Acta 233:610.

    Article  PubMed  Google Scholar 

  • de Kruyff, B., de Greef, W. J., van Eyk, R. V. W., Demel, R. A., and van Deenen, L. L. M., 1973, The effect of different fatty acid and sterol composition on the erythritol flux through the cell membrane of Acholeplasma laidlawii, Biochim. Biophys. Acta 298:479.

    Article  PubMed  Google Scholar 

  • Demel, R. A., and de Kruyff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta 457:109.

    PubMed  CAS  Google Scholar 

  • Devaux, P., and McConnell, H. M., 1972, Lateral diffusion in spin-labelled phosphatidylcholine multilayers, J. Am. Chem. Soc. 94:4475.

    Article  PubMed  CAS  Google Scholar 

  • Elliker, P. R., and Frazier, W. C, 1938, Influence of time and temperature of incubation on heat resistance of Escherichia coli, J. Bacteriol. 36:83.

    PubMed  CAS  Google Scholar 

  • Esser, A. F., and Souza, K. A. 1974, Correlation between thermal death and membrane fluidity in Bacillus stearothermophilus, Proc. Natl. Acad. Sci. USA 71:4111.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, J., and Rose, A. H., 1968, Cold shock in a mesophilic and a psychrophilic pseudomonad, J. Gen. Microbiol. 50:429.

    PubMed  CAS  Google Scholar 

  • Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1979, Structure of Escherichia coli membranes: Phospholipid conformation in model membranes and cells as studied by deuterium magnetic resonance, Biochemistry 18:5605.

    Article  Google Scholar 

  • Gaily, H. U., Pluschke, G., Overath, P., and Seelig, J., 1980, Structure of Escherichia coli membranes: Fatty acyl chain order parameters in inner and outer membranes and derived liposomes, Biochemistry 19:1638.

    Article  Google Scholar 

  • Gorrill, R. H., and McNeil, E. M., 1960, The effect of cold diluent on the viable count of Pseudomonas pyocyanea, J. Gen Microbiol. 22:437.

    PubMed  CAS  Google Scholar 

  • Gutknecht, J., and Walter, A., 1981, Transport of protons and hydrochloric acid through lipid bilayer membranes, Biochim. Biophys. Acta 641:183.

    Article  PubMed  CAS  Google Scholar 

  • Haest, C. W. M., de Gier, J., van Es, G. A., Verkleij, A. J., and van Deenen, L. L. M., 1972, Fragility of the permeability barrier of Escherichia coli, Biochim. Biophys. Acta 288:43.

    Article  PubMed  CAS  Google Scholar 

  • Haest, C. W. M., Verkleij, A. J., de Gier, J., Scheek, R., Ververgaert, P. H. J., and van Deenen, L. L. M., 1974, The effect of lipid phase transitions on the architecture of bacterial membranes, Biochim. Biophys. Acta 356:17.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, E. W., 1971, Correlation of fatty acid composition with thermal resistance of Escherichia coli, Dan. Tidsskr. Farm. 45:339.

    PubMed  CAS  Google Scholar 

  • Hansen, E. W., and Skadhauge, K., 1971, The influence of growth temperature on the thermal resistance of E. coli, Dan. Tidsskr. Farm. 45:24.

    PubMed  CAS  Google Scholar 

  • Hansen, N.-M., and Riemann, H., 1963, Factors affecting the heat resistance of nonsporing organisms, J. Appl. Bacteriol. 26:314.

    Article  Google Scholar 

  • Harold, F. M., 1977, Membranes and energy transduction in bacteria, in: Current Topics in Bioenergetics, Vol. 7 (D. R. Sanadi, ed.), pp. 83–147, Academic Press, New York.

    Google Scholar 

  • Hildebrand, K., and Nicolau, C, 1979, Nanosecond fluorescence anisotrophy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes, Biochim. Biophys. Acta 553:365.

    Article  Google Scholar 

  • Inniss, W. E., and Ingraham, J. L., 1978, Microbial life at low temperatures: Mechanisms and molecular aspects, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 73–104, Academic Press, New York.

    Google Scholar 

  • Jackson, M. B., and Cronan, J. E., Jr., 1978, An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli, Biochim. Biophys. Acta 512:472.

    Article  PubMed  CAS  Google Scholar 

  • Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotrophy data, Proc. Natl. Acad. Sci. USA 76:6361.

    Article  PubMed  Google Scholar 

  • Janoff, A. S., Haug, A., and McGroarty, E. J., 1979, Relationship of growth temperature and thermotropic lipid phase changes in cytoplasmic and outer membranes from Escherichia coli, Biochim. Biophys. Acta 555:56.

    Article  PubMed  CAS  Google Scholar 

  • Janoff, A. S., Gupte, S., and McGroarty, E. J., 1980a, Correlation between temperature range of growth and structural transitions in membranes and lipids of Escherichia coli K12, Biochim. Biophys. Acta 598:641.

    Article  PubMed  CAS  Google Scholar 

  • Janoff, A. S., Haug, A., and McGroarty, E. J., 1980b, Anesthetics alter outer membrane architecture and temperature range of growth of Escherichia coli K12, Biochem. Biophys. Res. Commun. 95:1364.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, G. J., Daniel, R. M., Nicholson, B. K., and Morgan, H. W., 1982, Membrane phase transitions and succinate oxidase activity in an extremely thermophilic bacterium, Biochim. Biophys. Acta 685:191.

    Article  CAS  Google Scholar 

  • Kanehisa, M. I., and Tsong, T. Y., 1978, Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers, J. Am. Chem. Soc. 100:424.

    Article  CAS  Google Scholar 

  • Katsui, N., Tsuchido, T., Takano, M., and Shibasaki, I., 1981, Effect of preincubation temperature on the heat resistance of Escherichia coli having different fatty acid compositions, J. Gen. Microbiol. 122:357.

    PubMed  CAS  Google Scholar 

  • Kawada, N., and Nosoh, Y, 1981, Relation of Arrhenius discontinuities of NADH dehydrog-enase to change in membrane lipid fluidity of Bacillus caldotenax, FEBS Lett. 124:15.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, S., Kinosita, K., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16:2319.

    Article  PubMed  CAS  Google Scholar 

  • Lawaczeck, R., Blackman, R., and Kainosho, M., 1977, Ion permeation across the bilayer of annealed phosphatidylcholine vesicles at elevated temperatures, Biochim. Biophys. Acta 468:441.

    Google Scholar 

  • Leder, I. G., 1972, Interrelated effects of cold shock and osmotic pressure on the permeability of the Escherichia coli membrane to permease accumulated substrates, J. Bacteriol. 111:211.

    PubMed  CAS  Google Scholar 

  • Le Grimellec, C., and Leblanc, G., 1978, Effect of membrane cholesterol on potassium transport in Mycoplasma mycoides var. capri (PG3), Biochim. Biophys. Acta 514:152.

    Article  PubMed  Google Scholar 

  • Le Grimellec, C., Cardinal, J., Giocondi, M.-C, and Carriere, S., 1981, Control of membrane lipids in Mycoplasma gallisepticum: Effect on lipid order, J. Bacteriol. 146:155.

    PubMed  Google Scholar 

  • McElhaney, R. N., 1974a, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. N., 1974b, The effect of membrane-lipid phase transitions on membrane structure and on the growth of Acholeplasma laidlawii B, J. Supramol. Struct. 2:617.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. N., 1982a, The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes, Chem. Phys. Lipids 30:229.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. N., 1982b, Effects of membrane lipids on transport and enzymic activities in: Current Topics in Membranes and Transport, Vol. 17 (S. Razin and S. Rottem, eds.), pp. 317–380, Academic Press, New York.

    Google Scholar 

  • McElhaney, R. N., and Souza, K. A., 1976, The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus, Biochim. Biophys. Acta 443:348.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. N., de Gier, J., and van der Neut-Kok, E. C. M., 1973, The effect of alterations in fatty acid composition and cholesterol content on the nonelectrolyte permeability of Acholeplasma laidlawii B cells and derived liposomes, Biochim. Biophys. Acta 298:500.

    Article  PubMed  CAS  Google Scholar 

  • McGarrity, J. T., and Armstrong, J. B., 1981, The effect of temperature and other growth conditions on the fatty acid composition of Escherichia coli, Can. J. Microbiol. 27:835.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D., Watts, A., and Knowles, P. F., 1976, Evidence for phase boundary lipid: Permeability of Tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition, Biochemistry 15:3570.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, D. L., and Steim, J. M., 1976, Thermotropic transitions in biomembranes, Annu. Rev. Biophys. Bioeng. 5:205.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, D. L., and Steim, J. M., 1979, Lipid-associated thermal events in biomembranes, in: Progress in Surface and Membrane Science, Vol. 13 (D. A. Cadenhead and J. F. Danielli, eds.), pp. 211–296, Academic Press, New York.

    Google Scholar 

  • Mely-Goubert, B., and Freedman, M. H., 1980, Lipid fluidity and membrane protein monitoring using 1,6-diphenyl-1,3,5-hexatriene, Biochim. Biophys. Acta 601:315.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, H., Mitsui, T., Nishihara, M., and Kito, M., 1980, Relation between growth temperature of E. coli and phase transition temperatures of its cytoplasmic and outer membranes, Biochim. Biophys. Acta 601:1.

    Article  PubMed  CAS  Google Scholar 

  • Nichol, C. P., Davis, J. H., Weeks, G., and Bloom, M., 1980, Quantitative study of the fluidity of Escherichia coli membranes using deuterium magnetic resonance, Biochemistry 19:451.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, P., and Miller, N., 1974, Chloride diffusion from liposomes, Biochim. Biophys. Acta 356:184.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. W., and Deamer, D. W., 1980, Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique, Proc. Natl. Acad. Sci. USA 77:2038.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. W., Hill, M. W., Bangham, A. D., and Deamer, D. W., 1980, Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe, 9-aminoacridine, Biochim. Biophys. Acta 596:393.

    Article  PubMed  CAS  Google Scholar 

  • Novotny, C. P., and Englesberg, E., 1966, The L-arabinose permease system in Escherichia coli B/r, Biochim. Biophys. Acta 117:217.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki, Y., and Tanford, C, 1981, Proton and hydroxide ion permeability of phospholipid vesicles, Proc. Natl. Acad. Sci. USA 78:4324.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: Heterogeneity and role of cholesterol, FEBS Lett. 23:285.

    Article  PubMed  CAS  Google Scholar 

  • Op den Kamp, J. A. F., Kauerz, M. T., and van Deenen, L. L. M., 1975, Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states, Biochim. Biophys. Acta 406:169.

    Article  PubMed  CAS  Google Scholar 

  • Overath, P., Schairer, H. U., and Stoffel, W., 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 67:606.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330.

    Article  PubMed  CAS  Google Scholar 

  • Paton, J. C., McMurchie, E. J., May, B. K., and Elliott, W. H., 1978, Effect of growth temperature on membrane fatty acid composition and susceptibility to cold shock of Bacillus amyloliquefaciens, J. Bacteriol. 135:754.

    CAS  Google Scholar 

  • Pluschke, G., and Overath, P., 1981, Function of phospholipids in Escherichia coli: Influence of changes in polar head group composition on the lipid phase transition and characterization of a mutant containing only saturated phospholipid acyl chains, J. Biol. Chem. 256:3207.

    PubMed  CAS  Google Scholar 

  • Ring, K., 1965, The effect of low temperatures on permeability in Streptomyces hydrogenans, Biochem. Biophys. Res. Commun. 19:576.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. T., 1973, Measurement of the diffusion coefficient in the concentrated phases of the soap-water system by nuclear magnetic resonance spectroscopy, Nature (London) 242:348.

    Article  CAS  Google Scholar 

  • Rottem, S., 1981, Cholesterol is required to prevent crystallization of Mycoplasma arginini phospholipids at physiological temperatures, FEBS Lett. 133:161.

    Article  PubMed  CAS  Google Scholar 

  • Rottem, S., Yashouv, J., Ne’eman, Z., and Razin, S., 1973a, Cholesterol in Mycoplasma membranes: Composition, ultrastructure and biological properties of membranes from Mycoplasma mycoides var. capri cells adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:495.

    Article  PubMed  CAS  Google Scholar 

  • Rottem, S., Cirillo, V. P., de Kruyff, B., Shinitzky, M., and Razin, S., 1973b, Cholesterol in mycoplasma membranes: Correlation of enzymic and transport activities with physical state of lipids of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:509.

    Article  PubMed  CAS  Google Scholar 

  • Saito, Y., and McElhaney, R. N., 1977, Membrane lipid biosynthesis in Acholeplasma laidlawii B: Incorporation of exogenous fatty acids into membrane glyco-and phospholipids by growing cells, J. Bacteriol. 132:485.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Silvius, J. R., and McElhaney, R. N., 1977, Membrane lipid biosynthesis in Acholeplasma laidlawii B: De navo biosynthesis of saturated fatty acids by growing cells, J. Bacteriol. 132:497.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Silvius, J. R., and McElhaney, R. N., 1978, Membrane lipid biosynthesis in Acholeplasma laidlawii B: Elongation of medium and long-chain exogenous fatty acids in growing cells, J. Bacteriol. 133:66.

    PubMed  CAS  Google Scholar 

  • Sandermann, H., 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta 515:209.

    PubMed  CAS  Google Scholar 

  • Sanders, R. L., and May, B. K., 1975, Evidence for extrusion of unfolded extracellular enzyme polypeptide chains through membranes of Bacillus amyloliquefaciens, J. Bacteriol. 123:806.

    PubMed  CAS  Google Scholar 

  • Schindler, H., and Seelig, J., 1973, EPR spectra of spin labels in lipid bilayers, J. Chem. Phys. 59:1841.

    Article  CAS  Google Scholar 

  • Schreier, S., Polnaszek, C. F., and Smith, I. C. P., 1978, Spin labels in membranes: Problems in practice, Biochim. Biophys. Acta 515:375.

    Google Scholar 

  • Seelig, A., and Seelig, J., 1974, The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry 13:4839.

    Article  PubMed  CAS  Google Scholar 

  • Seelig, J., and Niederberger, W., 1974, Two pictures of a lipid bilayer: A comparison between deuterium label and spin-label experiments, Biochemistry 13:1585.

    Article  PubMed  CAS  Google Scholar 

  • Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.

    Article  PubMed  CAS  Google Scholar 

  • Shechter, E., Gulik-Krzywicki, T., and Kabach, H. R., 1972, Correlations between fluorescence, X-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli, Biochim. Biophys. Acta 274:466.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367.

    PubMed  CAS  Google Scholar 

  • Silvius, J. R., and McElhaney, R. N., 1978, Lipid compositional manipulation in Acholeplasma laidlawii B: Effect of exogenous fatty acids on fatty acid composition and cell growth when endogenous fatty acid production is inhibited. Can. J. Biochem. 56:462.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J. R., and McElhaney, R. N., 1980a, Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes, J. Theor. Biol. 88:135.

    Article  Google Scholar 

  • Silvius, J. R., and McElhaney, R. N., 1980b, Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B, Proc. Natl. Acad. Sci. USA 77:1255.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J. R., Mak, N., and McElhaney, R. N., 1980a, Lipid and protein composition and thermotropic phase transitions in fatty acid-homogeneous membranes of Acholeplasma laidlawii B, Biochim. Biophys. Acta 597:199.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J. R., Mak, N., and McElhaney, R. N., 1980b, Why do prokaryotes regulate membrane lipid fluidity?, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 213–222, Humana Press, Clifton, N.J.

    Google Scholar 

  • Sinensky, M., 1974, Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 71:522.

    Article  PubMed  CAS  Google Scholar 

  • Smeaton, J. R., and Elliott, W. H., 1967, Selective release of ribonuclease-inhibitor from Bacillus subtilis cells by cold shock treatment, Biochem. Biophys. Res. Commun. 26:75.

    Article  PubMed  CAS  Google Scholar 

  • Steim, J. M., 1970, Phase transitions in model and biological membranes, in: Liquid Crystals and Ordered Fluids (J. F. Johnson and R. S. Porter, eds.), pp. 1–11, Plenum Press, New York.

    Google Scholar 

  • Steim, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. N., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Natl. Acad. Sci. USA 63:104.

    Article  PubMed  CAS  Google Scholar 

  • Strange, R. E., and Dark, F. A., 1962, Effect of chilling on Aerobacter aerogenes in aqueous suspension, J. Gen. Microbiol. 29:719.

    PubMed  CAS  Google Scholar 

  • Taylor, M. G., and Smith, I. C. P., 1980, The fidelity of response by nitroxide spin probes to changes in membrane organization: The condensing effect of cholesterol, Biochim. Biophys. Acta 599:140.

    Article  PubMed  CAS  Google Scholar 

  • Thilo, L., and Overath, P., 1976, Randomization of membrane lipids in relation to transport system assembly in Escherichia coli, Biochemistry 15:328.

    Article  PubMed  CAS  Google Scholar 

  • Thilo, L., Träuble, H., and Overath, P., 1977, Mechanistic interpretation of the influence of lipid phase transitions on transport functions, Biochemistry 16:1283.

    Article  PubMed  CAS  Google Scholar 

  • Träuble, H., and Sackman, E., 1972, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transition, J. Am. Chem. Soc. 94:4499.

    Article  PubMed  Google Scholar 

  • Tsien, H., Panos, C., Shockman, G. D., and Higgins, M. L., 1980, Evidence that Streptococcus mutans constructs its membrane with excess fluidity for survival at suboptimal temperatures, J. Gen. Microbiol. 121:105.

    PubMed  CAS  Google Scholar 

  • Tsukamoto, Y., Ueki, T., Mitsui, T., Ono, T.-A., and Murata, N., 1980, Relationship between growth temperature of Anacystis nidulans and phase transition temperature of its thylakoid membranes, Biochim. Biophys. Acta 602:673.

    Article  PubMed  CAS  Google Scholar 

  • Uehara, K., Akutsu, H., Kyogoku, Y., and Akamatsu, Y., 1977, Phase transitions of phos-pholipid bilayers from an unsaturated fatty acid auxotroph of Escherichia coli, Biochim. Biophys. Acta 466:393.

    Article  PubMed  CAS  Google Scholar 

  • Wakayama, N., 1978, Membrane properties of an extreme thermophile. II. Membrane functions underlying leucine transport and their relation with thermotropic phase transitions, J. Biochem. 83:1693.

    PubMed  CAS  Google Scholar 

  • Wakayama, N., and Oshima, T., 1978, Membrane properties of an extreme thermophile. I. Detection of the phase transition and its dependence on growth temperatures, J. Biochem. 83:1687.

    PubMed  CAS  Google Scholar 

  • Wu, S. H., and McConnell, H. M., 1973, Lateral phase separations and perpendicular transport in membranes, Biochem. Biophys. Res. Commun. 55:484.

    Article  PubMed  CAS  Google Scholar 

  • Yatvin, M. B., 1977, The influence of membrane lipid composition and procaine on hyperthermic death of cells, Int. J. Radiat. Biol. 32:513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

McElhaney, R.N. (1984). The Relationship between Membrane Lipid Fluidity and Phase State and the Ability of Bacteria and Mycoplasmas to Grow and Survive at Various Temperatures. In: Kates, M., Manson, L.A. (eds) Membrane Fluidity. Biomembranes, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4667-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4667-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4669-2

  • Online ISBN: 978-1-4684-4667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics