Fluidity of Cell Membranes in the Presence of Some Drugs and Inhibitors

  • Guido Zimmer
Part of the Biomembranes book series (B, volume 12)


In recent years biomembrane fluidity has become the object of intense research.* Fluidity is fundamentally linked to membrane structure. For an elucidation of structure-related questions, such as drug action, membrane transport, and enzymatic activities, a variety of biophysical methods have been acquired. Referring to those methods mentioned in the text of this chapter, some brief introductory remarks have been collected under subheadings A–H.


Spin Label Membrane Interface Annular Lipid Membrane Lipid Fluidity Lipid Spin Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, M., Burton, J. S., Hadgraft, J., and Kellaway, I. W., 1981, Thermodynamics of partitioning and efflux of phenothiazines from liposomes, J. Membr. Biol. 58:181.PubMedGoogle Scholar
  2. Akutsu, H., and Kyogoku, Y., 1975, Infrared and Raman spectra of phosphatidylethanolamine and related compounds, Chem. Phys. Lipids 14:113.PubMedGoogle Scholar
  3. Aloni, B., Shinitzky, M., and Livne, A., 1974, Dynamics of erythrocyte lipids in intact cells, in ghost membranes and in liposomes, Biochim. Biophys. Acta 348:438.PubMedGoogle Scholar
  4. Becker, M., 1984, Dissertation, Fachbereich Humanmedizin, University of Frankfurt.Google Scholar
  5. Bell, F. P., and Hubert, E. V., 1980, Effect of local anesthetics on sterol biosynthesis and sterol esterification in rat liver in vitro, Biochim. Biophys. Acta 619:302.PubMedGoogle Scholar
  6. Bloch, R., 1974, Human erythrocyte sugar transport identification of the essential residues of the sugar carrier by specific modification, J. Biol. Chem. 249:1814.PubMedGoogle Scholar
  7. Borochov, H., and Shinitzky, M., 1976, Vertical displacement of membrane proteins mediated by changes in microviscosity, Proc. Natl. Acad. Sci. USA 73:4526.PubMedGoogle Scholar
  8. Brown, K. G., Peticolas, W. L., and Brown, E., 1973, Raman studies of conformational changes in model membrane systems. Biochem. Biophys. Res. Commun. 54:358.PubMedGoogle Scholar
  9. Büchi, J., and Perlia, X., 1972, The design of local anesthetics, in: Drug Design, Vol. III (E. J. Ariens, éd.), pp. 244–391, Academic Press, New York.Google Scholar
  10. Cannon, B., Polnaszek, C. F., Butler, K. W., Eriksson, L. E. G., and Smith, I. C. P., 1975, The fluidity and organization of mitochondrial lipids of the brown adipose tissue of cold-adapted rats and hamsters as determined by nitroxide spin probes, Arch. Biochem. Biophys. 167:505.PubMedGoogle Scholar
  11. Cater, B. R., Chapman, D., Hawes, S. M., and Saville, J., 1974, Lipid phase transitions and drug interactions, Biochim. Biophys. Acta 363:54.PubMedGoogle Scholar
  12. Chapman, D., Keough, K., and Urbina, J., 1974, Biomembrane phase transitions: studies of lipid-water systems using differential scanning calorimetry, J. Biol. Chem. 249:2512.PubMedGoogle Scholar
  13. Chow, E. I.-H., Chuang, S. Y., and Tseng, P. K., 1981, Detection of a phase transition in red cell membranes using positronium as a probe, Biochim. Biophys. Acta 646:356.PubMedGoogle Scholar
  14. Cooper, R. A., Leslie, M. H., Fischkoff, S., Shinitzky, M., and Shattil, S. J., 1978, Factors influencing the lipid composition and fluidity of red cell membranes in vitro: Production of red cells possessing more than two cholestérols per phospholipid, Biochemistry 17:327.PubMedGoogle Scholar
  15. Cullis, P. R., 1976, Hydrocarbon phase transitions, heterogeneous lipid distributions and lipid— protein interactions in erythrocyte membranes, FEBS Lett. 68:173.PubMedGoogle Scholar
  16. Cullis, P. R., and de Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399.PubMedGoogle Scholar
  17. Cullis, P. R., and Grathwohl, C, 1977, Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane: A 31P NMR and fluorescence study, Biochim. Biophys. Acta 471:213.PubMedGoogle Scholar
  18. Doenicke, A., 1977, Klinische Pharmakologie, in: Lehrbuch der Anaesthesiologie, Reanimation and Intensivtherapie (H. Benzer, R. Frey, W. Hügin, and O. Mayrhofer, eds.), pp. 123–195, Springer-Verlag, Berlin.Google Scholar
  19. Dorn-Zachertz, D., and Zimmer, G., 1981, Different protein-lipid interaction in human red blood cell membrane of Rh positive and Rh negative blood compared with Rhnull, Z. Naturforsch. Teil C 36:988.Google Scholar
  20. Elferink, J. G. R., 1977, The asymmetric distribution of chlorpromazine and its quaternary analogue over the erythrocyte membrane, Biochem. Pharmacol. 26:2411.Google Scholar
  21. Ellmann, G. L., 1959, Tissue sulfhydryl-groups, Arch. Biochem. Biophys. 82:70.Google Scholar
  22. Foucher, B., and Gaudemer, Y., 1971, Implication of SH-groups in the mitochondrial energy-coupling system revealed by means of 14C ethacrynate incorporation into rat liver mitochondria, FEBS Lett. 13:95.PubMedGoogle Scholar
  23. Frenzel, J., Arnold, K., and Nuhn, P., 1978, Calorimetric, 13C NMR, and 31P NMR studies on the interactions of some phenothiazine derivatives with dipalmitoyl phosphatidylcholine model membranes, Biochim. Biophys. Acta 507:185.PubMedGoogle Scholar
  24. Fringeli, U. P., and Günthard, H. H., 1981, Infrared membrane spectroscopy, in: Molecular Biology, Biochemistry and Biophysics, Vol. 31 (E. Grell, ed.), pp. 270–332, Springer, BerlGoogle Scholar
  25. Gaber, B. P., and Peticolas, W. L., 1977, On the quantitative interpretation of biomembrane structure by Raman spectroscopy, Biochim. Biophys. Acta 465:260.PubMedGoogle Scholar
  26. Galla, H.-J., and Luisetti, J., 1980, Lateral and transversal diffusion and phase transitions in erythrocyte membranes: An excimer fluorescence study, Biochim. Biophys. Acta 596:108.PubMedGoogle Scholar
  27. Goheen, S. C., Gilman, T. H., Kauffman, J. W., and Garvin, J. E., 1977, The effect on Raman spectra of extraction of peripheral proteins from human erythrocyte membranes, Biochem. Biophys. Res. Commun. 79:805.PubMedGoogle Scholar
  28. Gold, A. H., and Segal, H. L., 1965, A peptide, containing the essential sulfhydryl group of beef heart lactic dehydrogenase, Biochemistry 4:1506.PubMedGoogle Scholar
  29. Gottlieb, M. H., and Eanes, E. D., 1974, On phase transitions in erythrocyte membranes and extracted membrane lipids, Biochim. Biophys. Acta 373:519.PubMedGoogle Scholar
  30. Hare, F., and Lussan, C, 1977, Variations in microviscosity values induced by different rotational behaviour of fluorescent probes in some alipathic environments, Biochim. Biophys. Acta 467:262.PubMedGoogle Scholar
  31. Hare, F., and Lussan, C, 1978, Mean viscosities in microscopic systems and membrane bilayers, FEBS Lett. 94:231.PubMedGoogle Scholar
  32. Haynes, D. H., 1974, 1-Anilino-8-naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface, J. Membr. Biol. 17:341.PubMedGoogle Scholar
  33. Haynes, D. H., and Staerk, H., 1974, 1-Anilino-8-naphthalenesulfonate: A fluorescent probe of membrane surface structure, composition and mobility, J. Membr. Biol. 17:313.PubMedGoogle Scholar
  34. Hirata, F., and Axelrod, J., 1978, Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity, Nature (London) 275:219.Google Scholar
  35. Hubbell, W. L., and McConnell, H. M., 1969, Orientation and motion of amphiphilic spin labels in membranes, Proc. Natl. Acad. Sci. USA 64:20.PubMedGoogle Scholar
  36. Jain, M. K., and Wu, N. M., 1977, Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer. III. Phase transition in lipid bilayer, J. Membr. Biol. 34:157.Google Scholar
  37. Jain, M. K., Wu, N. M., and Wray, L. V., 1975, Drug-induced phase change in bilayer as possible mode of action of membrane expanding drugs, Nature (London) 255:494.Google Scholar
  38. Janoff, A. S., Pringle, M. J., and Miller, K. W., 1981, Correlation of general anesthetic potency with solubility in membranes, Biochim. Biophys. Acta 649:125.PubMedGoogle Scholar
  39. Jendrasiak, G. L., and Mendible, J. C, 1976, The effect of phase transition on the hydration and electrical conductivity of phospholipids, Biochim. Biophys. Acta 424:133.PubMedGoogle Scholar
  40. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkoii, G., 1973, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. USA 70:480.PubMedGoogle Scholar
  41. Kapitza, H.-G., and Sackmann, E., 1980, Local measurement of lateral motion in erythrocyte membranes by photobleaching technique, Biochim. Biophys. Acta 595:56.PubMedGoogle Scholar
  42. Kleinfeld, A. M., Dragsten, P., Klausner, R. D., Pjura, W. J., and Matayoshi, E. D., 1981, The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes, Biochim. Biophys. Acta 649:471.PubMedGoogle Scholar
  43. Knowles, P. F., Watts, A., and Marsh, D., 1979, Spin label studies of lipid immobilization in dimyristoylphosphatidylcholine substituted cytochrome oxidase, Biochemistry 18:4480.PubMedGoogle Scholar
  44. Koblin, D. D., Pace, W. D., and Wang, H. H., 1975, The penetration of local anesthetics into the red blood cell membrane as studied by fluorescence quenching, Arch. Biochem. Biophys. 171:176.PubMedGoogle Scholar
  45. Kreutz, W., 1972, Strukturprinzipien in Bio-Membranen, Angew. Chem. 84:597.Google Scholar
  46. Krupka, R. M., and Deves, R., 1980, Evidence for allosteric inhibition sites in the glucose carrier of erythrocytes, Biochim. Biophys. Acta 598:127.PubMedGoogle Scholar
  47. Kyogoku, Y., Yoshikawa, K., and Terada, H., 1980, Hydration water in mitochondrial suspension, in: Water and Metal Cations in Biological Systems (B. Pullman and K. Yagi, eds.), pp. 129–134, Japan Scientific Societies Press, Tokyo.Google Scholar
  48. Lacko, L., Wittke, B., and Geck, P., 1972, The pH dependence of exchange transport of glucose in human erythrocytes, J. Cell Physiol. 80:73.PubMedGoogle Scholar
  49. Lacko, L., Wittke, B., and Lacko, I., 1977, Interactions of local anesthetics with the transport system of glucose in human erythrocytes, J. Cell Physiol. 92:257.PubMedGoogle Scholar
  50. Lacko, L., Wittke, B., and Zimmer, G., 1981, Interaction of benzoic acid derivatives with the transport system of glucose in human erythrocytes, Biochem. Pharmacol. 30:1425.PubMedGoogle Scholar
  51. Lands, W. E. M., 1980, Fluidity of membrane lipids, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 69–73, Humana Press, Clifton, N.J.Google Scholar
  52. Lee, A. G., 1976, Model for action of local anesthetics, Nature (London) 262:545.Google Scholar
  53. Lee, A. G., 1977, Local anesthesia: The interaction between phospholipids and chlorpromazine, propanolol and practolol, Mol. Pharmacol. 13:474.PubMedGoogle Scholar
  54. Lee, A. G., 1979, A consumer’s guide to models of local anesthetic action, Anesthesiology 51:64.PubMedGoogle Scholar
  55. LeFevre, P. G., 1961, Sugar transport in the red blood cell: Structure-activity relationship in substrates and antagonists, Pharmacol. Rev. 13:39.PubMedGoogle Scholar
  56. Ligeti, E., and Horvath, L. I., 1980, Effect of Mg2+ on membrane fluidity and K+ transport in rat liver mitochondria, Biochim. Biophys. Acta 600:150.PubMedGoogle Scholar
  57. Lippert, J. L., and Peticolas, W. L., 1971, Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers, Proc. Natl. Acad. Sci. USA 68:1572.PubMedGoogle Scholar
  58. Lippert, J. L., and Peticolas, W. L., 1972, Raman active vibrations in long-chain fatty acids and phospholipid sonicates, Biochim. Biophys. Acta 282:8.PubMedGoogle Scholar
  59. McMurchie, E. J., and Raison, J. K., 1979, Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes, Biochim. Biophys. Acta 554:364.PubMedGoogle Scholar
  60. Mannella, C. A., and Parsons, D. F., 1977, Uncoupler-induced changes in mitochondrial structure detected by small-angle X-ray scattering, Biochim. Biophys. Acta 460:375.PubMedGoogle Scholar
  61. Mendelsohn, R., 1972, Laser Raman spectroscopic study of egg lecithin and egg lecithin-cholesterol mixtures, Biochim. Biophys. Acta 290:15.PubMedGoogle Scholar
  62. Miyazawa, T., 1967, Infrared spectra and helical conformations, in: Poly-alpha-amino acids (G. D. Fasman, ed.), pp. 69–103, Dekker, New York.Google Scholar
  63. Miyazawa, T., and Blout, E. R., 1961, The infrared spectra of polypeptides in various conformations: Amide I and II bands, J. Am. Chem. Soc. 83:712.Google Scholar
  64. Muraoka, S., Terada, H., and Takaya, T., 1975, The minimum effective amount of uncouplers for rat liver mitochondria, FEBS Lett. 54:53.PubMedGoogle Scholar
  65. Naftalin, R. J., and Holman, G. D., 1977, Transport of sugars in human red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), pp. 257–300, Academic Press, New York.Google Scholar
  66. Ogiso, T., Iwaki, M., and Mori, K., 1981, Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation in membrane, Biochim. Biophys. Acta 649:325.PubMedGoogle Scholar
  67. Oldfield, E., and Chapman, D., 1972, Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol, FEBS Lett. 23:285.PubMedGoogle Scholar
  68. Pache, W., and Chapman, D., 1972, Interaction of antibiotics with membranes: Chlorothricin, Biochim. Biophys. Acta 255:348.PubMedGoogle Scholar
  69. Papahadjopoulos, D., Jacobson, K., Poste, G., and Shepherd, G., 1975, Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers, Biochim. Biophys. Acta 394:504.PubMedGoogle Scholar
  70. Quintanilha, A. T., and Packer, L., 1977, Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria, Proc. Natl. Acad. Sci. USA 74:570.PubMedGoogle Scholar
  71. Rimon, G., Hanski, E., Braun, S., and Levitzki, A., 1978, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature (London) 276:394.Google Scholar
  72. Riordan, J. R., 1980, Plasma membrane Mg2+ ATPase activity is inversely related to lipid fluidity, in: Membrane Fluidity (M. Kates and A. Kuksis, eds.), pp. 119–129, Humana Press, Clifton, N.J.Google Scholar
  73. Schapendonk, H. C. M., Hemrika-Wagner, A. M., Theuvenet, A. P. R., Wong Fong Sang, H. W., Vredenberg, W. J., and Kraayenhof, R., 1980, Energy-dependent changes of the electrokinetic properties of chloroplasts, Biochemistry 19:1922.PubMedGoogle Scholar
  74. Scheidler, P. J., and Steim, J. M., 1975, Differential scanning calorimetry of biological membranes: Instrumentation, in: Methods in Membrane Biology, Vol. 4 (E. E. Korn, ed.), pp. 77–95, Plenum Press, New York.Google Scholar
  75. Seelig, A., and Seelig, J., 1974, The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry 13:4839.PubMedGoogle Scholar
  76. Seeman, P., 1972, The membrane actions of anesthetics and tranquilizers, Pharmacol. Rev. 24:583.PubMedGoogle Scholar
  77. Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367.PubMedGoogle Scholar
  78. Shinitzky, M., and Inbar, M., 1976, Microviscosity parameters and protein mobility in biological membranes, Biochim. Biophys. Acta 433:133.PubMedGoogle Scholar
  79. Shiuan, D., and Tu, S.-I., 1978, Fluorescent labeling of mitoplast membrane: Effect of oxidative phosphorylation uncouplers, Biochemistry 17:2249.PubMedGoogle Scholar
  80. Simmons, N. L., and Naftalin, R. J., 1976, Membrane and intracellular modes of sugar-dependent increments in red cell stability, Biochim. Biophys. Acta 419:493.PubMedGoogle Scholar
  81. Skou, J. C, 1958, Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nerve tissue lipoids, Biochim. Biophys. Acta 30:625.PubMedGoogle Scholar
  82. Taylor, M. G., and Smith, I. C. P., 1980, The fidelity of response by nitroxide spin probes to changes in membrane organization, Biochim. Biophys. Acta 599:140.PubMedGoogle Scholar
  83. Terada, H., 1975, Some biochemical and physicochemical properties of the potent uncoupler SF 6847 (3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile), Biochim. Biophys. Acta 387:519.PubMedGoogle Scholar
  84. Terada, H., 1981, The interaction of highly active uncouplers with mitochondria, Biochim. Biophys. Acta 639:225.PubMedGoogle Scholar
  85. Terada, H., van Dam, K., 1975, On the stoichiometry between uncouplers of oxidative phos-phorylation and respiratory chains: The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile), Biochim. Biophys. Acta 387:507.PubMedGoogle Scholar
  86. Träuble, H., 1971, Phasenumwandlungen in Lipiden: Mögliche Schaltprozesse in biologischen Membranen, Naturwissenschaften 58:277.PubMedGoogle Scholar
  87. Träuble, H., and Haynes, D. H., 1971, The volume change in lipid bilayer lamella at the crystalline-liquid crystalline phase transition, Chem. Phys. Lipids 7:324.Google Scholar
  88. Trudell, J. R., 1977, A unitary theory of anesthesia based on lateral phase separations in nerve membranes, Anesthesiology 46:5.PubMedGoogle Scholar
  89. Trudell, J. R., Hubbell, W. L., and Cohen, E. N., 1973, The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles, Biochim. Biophys. Acta 291:321.PubMedGoogle Scholar
  90. Verma, S. P., and Wallach, D. F. H., 1976, Multiple thermotropic state transitions in erythrocyte membranes: A laser-Raman study of the CH-stretching and acoustical regions, Biochim. Biophys. Acta 436:307.PubMedGoogle Scholar
  91. Wallach, D. F. H., Verma, S. P., and Fookson, J., 1979, Application of laser Raman and infrared spectroscopy to the analysis of membrane structure, Biochim. Biophys. Acta 559:153.PubMedGoogle Scholar
  92. Ziemann, C., and Zimmer, G., 1980, Alkaline phosphatase in red cell membrane: Interconnection of activities and membrane lipid fluidity, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 131–139, Humana Press, Clifton, N.J.Google Scholar
  93. Zimmer, G., 1977, Carbonylcyanide p-trifluoro-methoxyphenylhydrazone-induced change of mitochondrial membrane structure revealed by lipid and protein spin labeling, Arch. Biochem. Biophys. 181:26.PubMedGoogle Scholar
  94. Zimmer, G., and Lacko, L., 1971, Structural change of human red cell membranes in the glucose-preloaded state, FEBS Lett. 12:333.PubMedGoogle Scholar
  95. Zimmer, G., and Schirmer, H., 1974, Viscosity changes of erythrocyte membrane and membrane lipids at transition temperature, Biochim. Biophys. Acta 345:314.Google Scholar
  96. Zimmer, G., and Schnabel, S. 1982, Action of local anesthetics on intensity of lipid transition of phospholipids in human red cell membrane, Arzneim. Forsch. 32:152.Google Scholar
  97. Zimmer, G., and Schulze, P., 1981, Membrane action of tricyclic drugs: Spectroscopic studies of a series of phenothiazines compared with tricyclic antidepressive substances in red cell membrane, using the spin labeling technique, Arzneim. Forsch. 31:1389.Google Scholar
  98. Zimmer, G., Lacko, L., and Günther, H., 1972a, Different binding sites for glucose and sorbose at the erythrocyte membrane, studied by gel filtration and infrared spectroscopy, J. Membr. Biol. 9:305.PubMedGoogle Scholar
  99. Zimmer, G., Keith, A. D., and Packer, L., 1972b, Effect of sucrose and uncouplers on lipid spin labeling of mitochondria, Arch. Biochem. Biophys. 152:105.PubMedGoogle Scholar
  100. Zimmer, G., Schirmer, H., and Bastian, P., 1975, Lipid-protein interactions at the erythrocyte membrane: Different influence of glucose and sorbose on membrane lipid transition, Biochim. Biophys. Acta 401:244.PubMedGoogle Scholar
  101. Zimmer, G., Mainka, L., and Berger, I., 1979a, 2-Mercaptopropionylglycine restores activity of oligomycin-sensitive ATPase to control values following treatment with carbonylcyanide-p-trifluoromethoxyphenylhydrazone, FEBS Lett. 107:217.PubMedGoogle Scholar
  102. Zimmer, G., Lacko, L., and Wittke, B., 1979b, Diethylpyrocarbonate interferes with lipid-protein interaction and glucose transport in the human red cell membrane, Experientia 35:610.PubMedGoogle Scholar
  103. Zimmer, G., Gross, W., Mehler, U., and Dorn-Zachertz, D., 1980, Membrane action of tricyclic drugs: Influence on amino acid transport in Streptomyces hydrogenans and on lipid transition in red blood cell membrane, Arzneim. Forsch. 30:221.Google Scholar
  104. Zimmer, G., Günther, H. O., and Schmidt, H., 1981a, Interaction of phloretin with the human red cell membrane and membrane lipids: Evidence from infrared, Raman and ESR spec-troscopy, Z. Naturforsch. Teil C 36:586.Google Scholar
  105. Zimmer, G., Lacko, L., and Krüger, E., 1981b, A spin label study on fluidization of human red cell membrane by esters of p-hydroxy-benzoic acid: Structure-functional aspects on membrane glucose transport, Biochem. Pharmacol. 30:2362.PubMedGoogle Scholar
  106. Zimmer, G., Schraven, E., Mainka, L., and Trottnow, D., 1982, Electron spin resonance studies on the influence of carbocromen on mitochondria and oligomycin-sensitive mitochondrial ATPase, Arzneim. Forsch. 32:110.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Guido Zimmer
    • 1
  1. 1.Gustav Embden-Zentrum der Biologischen ChemieJohann Wolfgang Goethe-UniversitätFrankfurt am MainWest Germany

Personalised recommendations