Advertisement

Fluorescence Polarization Studies of Membrane Fluidity: Where Do We Go from Here?

  • Larry A. Sklar
Part of the Biomembranes book series (B, volume 12)

Abstract

In the most general terms, the concept of membrane fluidity comprises a number of the motional characteristics of membrane components. It includes the translational and rotational motions of proteins and the translational diffusion of lipids in the plane of the membrane (“mobility”), and the segmental motions of lipid acyl chains and the reorientational motions of lipid polar head groups (“fluidity”). Fluidity appears to be an essential element of membrane structure and it is intimately related to biological function. Modifications in the composition of membrane lipids often result in alterations in membrane function. In numerous experiments (which are not considered explicitly in this review) it has been possible to detect the alteration in the physical properties of the membrane lipids and thus to link the alteration in the membrane composition and its structure to its function. For the purposes of this review we will regard fluidity as arising from the disordered nature of the lipid bilayer and mobility as reflecting diffusion of molecules within the matrix. While fluidity is a prerequisite for mobility, additional cellular factors may ultimately limit or determine the mobility of membrane proteins.

Keywords

Acyl Chain Fluorescence Lifetime Resonance Energy Transfer Probe Molecule Fluorescence Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, D., Wight, A., Webb, W., and Horwitz, A. F., 1978, Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane, Biochemistry 17:3604.PubMedCrossRefGoogle Scholar
  2. Badley, R. A., 1976, Fluorescent probing of dynamic and molecular organization of biological membranes, in: Modern Fluorescence Spectroscopy, Vol. 2 (E. L. Wehry, ed.), pp. 91–165, Plenum Press, New York.Google Scholar
  3. Bashford, C. L., Morgan, C. G., and Radda, G. K., 1976, Measurement and interpretation of fluorescence polarisations in phospholipid dispersions, Biochim. Biophys. Acta 426:157.PubMedCrossRefGoogle Scholar
  4. Bearer, E. L., and Friend, D. S., 1980, Anionic lipid domains: Correlation with functional topography in a mammalian cell membrane, Proc. Natl. Acad. Sci. USA 77:6601.PubMedCrossRefGoogle Scholar
  5. Beddard, G. S., and West, M. A. (eds.), 1981, Fluorescent Probes, Academic Press, New York.Google Scholar
  6. Boggs, J. M., and Moscarello, M. A., 1978, Structural organization of the human myelin membrane, Biochim. Biophys. Acta 515:1.PubMedGoogle Scholar
  7. Bramhall, J., Ishida, B., and Wisnieski, B., 1978, Photolabile and paramagnetic reagents for the investigation of transmembrane signaling events, J. Supramol. Struct. 9:399.PubMedCrossRefGoogle Scholar
  8. Browning, J. L., and Nelson, D. L., 1979, Fluorescent probes for asymmetric lipid bilayers: Synthesis and properties in phosphatidyl choline liposomes and erythrocyte membranes, J. Membr. Biol. 49:75.PubMedCrossRefGoogle Scholar
  9. Chan, S. S., Arndt-Jovin, D. J., and Jovin, T. M., 1979, Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system, J. Histochem. Cytochem. 27:56.PubMedCrossRefGoogle Scholar
  10. Chen, L. A., Dale, R. E., Roth, S., and Brand, L., 1977, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity,” J. Biol. Chem. 252:2163.PubMedGoogle Scholar
  11. Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559:289.PubMedGoogle Scholar
  12. Cogan, U., and Schachter, D., 1981, Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores, Biochemistry 20:6396.PubMedCrossRefGoogle Scholar
  13. Cogan, U., Shinitzky, M., Weber, G., and Nishida, T., 1973, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12:521.PubMedCrossRefGoogle Scholar
  14. Cundall, R. B., Johnson, I., Jones, M. W., Thomas, E. W., and Munro, I. H., 1979, Photo-physical properties of DPH derivatives, Chem. Phys. Lett. 64:39.CrossRefGoogle Scholar
  15. Curtain, C. C, 1979, Lymphocyte surface modulation and glycosphingolipids, Immunology 36:805.PubMedGoogle Scholar
  16. Curtain, C., Looney, F. D., and Smelstorius, J. A., 1979, Glycosphingolipid domain formation and lymphoid cell activation, in: Membrane Fluidity (M. Kates and A. Kuksis, eds.), pp. 273–282, Humana Press, Clifton, N.J.Google Scholar
  17. Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Biol. Chem. 252:7500.PubMedGoogle Scholar
  18. Edidin, M., 1974, Rotational and translational diffusion in membranes, Annu. Rev. Biophys. Bioeng. 3:179–201.PubMedCrossRefGoogle Scholar
  19. Engel, L. W., and Prendergast, F. G., 1981, Values for and significance of order parameters and “cone angles” of fluorophore rotation in lipid bilayers, Biochemistry 20:7338.PubMedCrossRefGoogle Scholar
  20. Fernandez, S. M., and Berlin, R. D., 1976, Cell surface distribution of lectin receptors determined by resonance energy transfer, Nature (London) 264:411.CrossRefGoogle Scholar
  21. Fleming, P. J., Koppel, D. E., Lau, A. L. Y., and Strittmatter, P., 1979, Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b 5, Biochemistry 18:5458.PubMedCrossRefGoogle Scholar
  22. Foster, M. C, and Yguerabide, J., 1979, Partition of a fluorescent molecule between liquid-crystalline and crystalline regions of membranes, J. Membr. Biol. 45:125.CrossRefGoogle Scholar
  23. Fulford, A. J. C, and Peel, W. E., 1980, Lateral pressures in biomembranes estimated from the dynamics of fluorescent probes, Biochim. Biophys. Acta 598:237.PubMedCrossRefGoogle Scholar
  24. Fung, B. K. K., and Stryer, L., 1978, Surface density determination in membranes by fluorescence energy transfer, Biochemistry 17:5241.PubMedCrossRefGoogle Scholar
  25. Gibson, G. A., and Loew, L. M., 1979, Phospholipid vesicle fusion monitored by fluorescence energy transfer, Biochem. Biophys. Res. Commun. 88:135.PubMedCrossRefGoogle Scholar
  26. Griffith, O. H., and Jost, P., 1978, Lipid-protein associations in: Molecular Specialization and Symmetry in Membrane Function (A. K. Solomon and M. Karnovsky, eds.), pp. 31–60, Harvard University Press, Cambridge, Mass.Google Scholar
  27. Grunberger, D., Haimowitz, R., and Shinitzky, M., 1982, Resolution of plasma membrane lipid fluidity in intact cells labelled with diphenylhexatriene, Biochim. Biophys. Acta 688:764.PubMedCrossRefGoogle Scholar
  28. Haigh, E. A., Thulborn, K. R., and Sawyer, W. H., 1979, Comparison of fluorescence energy transfer and quenching methods to establish the position and orientation of components within the transverse plane of the lipid bilayer: Application to the gramicidin A-bilayer interaction, Biochemistry 18:3525.PubMedCrossRefGoogle Scholar
  29. Hare, F., and Lussan, C, 1977, Variations in microviscosity values induced by different rotational behaviour of fluorescent probes in some aliphatic environments, Biochim. Biophys. Acta 467:262.PubMedCrossRefGoogle Scholar
  30. Hare, F., Amiell, J., and Lussan, C, 1979, Is an average viscosity tenable in lipid bilayers and membranes? A comparison of semiempirical equivalent viscosities given by unbound probes: A nitroxide and a fluorophore, Biochim. Biophys. Acta 555:388.PubMedCrossRefGoogle Scholar
  31. Haugland, R. P., 1981, Handbook of Fluorescent Probes, Molecular Probes, Inc., Junction City, Oreg.Google Scholar
  32. Hauser, H., Guyer, W., and Howell, K., 1979, Lateral distribution of negatively charged lipids in lecithin membranes: Clustering of fatty acids, Biochemistry 18:3285.PubMedCrossRefGoogle Scholar
  33. Henis, Y. I., Rimon, G., and Felder, S., 1982, Lateral mobility of phospholipids in turkey erythrocytes, J. Biol. Chem. 257:1407.PubMedGoogle Scholar
  34. Heyn, M. P., 1979, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108:359.PubMedCrossRefGoogle Scholar
  35. Heyn, M. P., Cherry, R. J., and Dencher, N. A., 1981, Lipid-protein interactions in bacter-iorhodopsin-dimyristoylphosphatidylcholine vesicle, Biochemistry 20:840.PubMedCrossRefGoogle Scholar
  36. Hidalgo, C., Thomas, D. D., and Ikemoto, N., 1978, Effect of the lipid environment on protein motion and enzymatic activity of the sarcoplasmic reticulum calcium ATPase, J. Biol. Chem. 253:6879.PubMedGoogle Scholar
  37. Hildebrand, K., and Nicolau, C., 1979, Nanosecond fluorescence anisotropy decays of 1-6-diphenyl-l,3,5-hexatriene in membranes, Biochim. Biophys. Acta 553:365.CrossRefGoogle Scholar
  38. Hoffmann, W., Sarzala, M. G., and Chapman, D., 1979, Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2+-activated ATPase, Proc. Natl. Acad. Sci. USA 76:3860.PubMedCrossRefGoogle Scholar
  39. Hoover, R. L., Bhalla, D. K., Yanovich, S., Inbar, M., and Karnovsky, M. J., 1980, Effects of linoleic acid on capping, lectin mediated mitogenesis, surface antigen expression, and fluorescent polarization in lymphocytes and BHK cells, J. Cell Physiol. 103:399.PubMedCrossRefGoogle Scholar
  40. Hoover, R. L., Fujiwara, K., Klausner, R. D., Bhalla, D. K., Tucker, R., and Karnovsky, M. J., 1981, Effects of free fatty acids on the organization of cytoskeletal elements in lymphocytes, Mol. Cell. Biol. 1:939.PubMedGoogle Scholar
  41. Jähnig, F., 1979, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data, Proc. Natl. Acad. Sci. USA 76:6361.PubMedCrossRefGoogle Scholar
  42. Johnson, S. M., and Nicolau, C, 1977, The distribution of 1,6-diphenylhexatriene fluorescence in normal human lymphocytes, Biochem. Biophys. Res. Commun. 76:869.PubMedCrossRefGoogle Scholar
  43. Kannagi, R., Koizumi, K., and Masuda, T., 1981, Limited hydrolysis of platelet membrane phospholipids: On the proposed phospholipase susceptible domain in platelet membranes, J.Biol. Chem. 256:1177.PubMedGoogle Scholar
  44. Karnovsky, M., 1979, Lipid domains in biological membranes, Am. J. Pathol. 97:212.PubMedGoogle Scholar
  45. Kawato, S., Kinosita, K., Jr., and Ikegami, A., 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16:2319.PubMedCrossRefGoogle Scholar
  46. Kawato, S., Kinosita, K., Jr., and Ikegami, A., 1978, Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques, Biochemistry 17:5026.PubMedCrossRefGoogle Scholar
  47. Keller, P. M., Person, S., and Snipes, W., 1977, A fluorescence enhancement assay of cell fusion, J. Cell Sci. 28:167.PubMedGoogle Scholar
  48. Kimelman, D., Tecoma, E. S., Wolber, P. K., Hudson, B. S., Wickner, W. T., and Simoni, R. D., 1979, Protein-lipid interactions: Studies of the M13 coat protein in dimyristoyl-phosphatidylcholine vesicles using parinaric acid, Biochemistry 18:5874.PubMedCrossRefGoogle Scholar
  49. Kinosita, K., Jr., Kawato, S., and Ikegami, A., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20:289.PubMedCrossRefGoogle Scholar
  50. Kinosita, K., Jr., Kawato, S., Ikegami, A., Yoshida, S., and Orii, Y., 1981, The effect of cytochrome oxidase on lipid chain dynamics: A nanosecond fluorescence depolarization study, Biochim. Biophys. Acta 647:7.PubMedCrossRefGoogle Scholar
  51. Klausner, R. D., and Wolf, D. E., 1980, Selectivity of fluorescent lipid analogues for lipid domains, Biochemistry 19:6199.PubMedCrossRefGoogle Scholar
  52. Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., and Karnovsky, M. J., 1980a, Lipid domains in membranes, J. Biol. Chem. 255:1286.PubMedGoogle Scholar
  53. Klausner, R. D., Bhalla, D. K., Dragsten, P., Hoover, R. L., and Karnovsky, M. J., 1980b, Model for capping derived from inhibition of surface receptor mapping by free fatty acids, Proc. Natl. Acad. Sci. USA 77:437.PubMedCrossRefGoogle Scholar
  54. Kleinfeld, A. M., Dragsten, P., Klausner, R. D., Pjura, W. J., and Matayoshi, E. D., 1981, The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes, Biochim. Biophys. Acta 649:471.PubMedCrossRefGoogle Scholar
  55. Koppel, D. E., 1979, Fluorescence redistribution after photobleaching: A new multipoint analysis of membrane translational dynamics, Biophys. J. 28:281.PubMedCrossRefGoogle Scholar
  56. Koppel, D. E., Fleming, P. J., and Strittmatter, P., 1979, Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer, Biochemistry 18:5450.PubMedCrossRefGoogle Scholar
  57. Koppel, D. E., Sheetz, M. P., and Schindler, M., 1981, Matrix control of protein diffusion in biological membranes, Proc. Natl. Acad. Sci. USA 78:3576.PubMedCrossRefGoogle Scholar
  58. Lakowicz, J. R., and Prendergast, F. G., 1978, Quantitation of hindered rotations of diphen-ylhexatriene in lipid bilayers by differential polarized phase fluorometry, Science 200:1399.PubMedCrossRefGoogle Scholar
  59. Lakowicz, J. R., Prendergast, F. G., and Hogen, D., 1979, Differential polarized phase fluo-rometric investigations of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotations, Biochemistry 18:508.PubMedCrossRefGoogle Scholar
  60. Lee, A. G., 1977a, Lipid phase transitions and phase diagrams. I. Lipid phase transitions, Biochim. Biophys. Acta 472:237.PubMedGoogle Scholar
  61. Lee, A. G., 1977b, Lipid phase transitions and phase diagrams. II. Mixtures involving lipids, Biochim. Biophys. Acta 472:285.PubMedGoogle Scholar
  62. Lentz, B. R., Barenholz, Y., and Thompson, T. E., 1976, Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayer. 2. Two-component phosphati-dylcholine liposomes, Biochemistry 15:4529.PubMedCrossRefGoogle Scholar
  63. Lepock, J. R., Morse, P. D., Mehlhorn, R. J., Hammerstedt, R. H., Snipes, W., and Keith, A. D., 1975, Spin labels for cell surfaces, FEBS Lett. 60:185.PubMedCrossRefGoogle Scholar
  64. London, E., and Feigenson, G. W., 1981, Fluorescence quenching in model membranes: An analysis of the local phospholipid environments of diphenylhexatriene and gramicidin A’, Biochim. Biophys. Acta 649:89.CrossRefGoogle Scholar
  65. Mabrey, S., and Sturtevant, J. M., 1977, Incorporation of saturated fatty acids into phospha-tidylcholine bilayers, Biochim. Biophys. Acta 486:444.PubMedGoogle Scholar
  66. Martin, T. W., and Lagunoff, D., 1978, Interaction of phosphatidylserine with mast cells, Proc. Natl. Acad. Sci. USA 75:4997.PubMedCrossRefGoogle Scholar
  67. Mayer, L. D., and Nelsestuen, G. L., 1981, Calcium-and prothrombin-induced lateral phase separation in membranes, Biochemistry 20:2457.PubMedCrossRefGoogle Scholar
  68. Moore, B. M., Lentz, B. R., and Meissner, G., 1978, Effects of sarcoplasmic reticulum Ca2+-ATPase on phospholipid bilayer fluidity: Boundary lipid, Biochemistry 17:5248.PubMedCrossRefGoogle Scholar
  69. Nigg, E. A., and Cherry, R. J., 1979, Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane, Biochemistry 18:3457.PubMedCrossRefGoogle Scholar
  70. Nigg, E. A., Bron, C., Girardet, M., and Cherry, R. J., 1980, Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking, Biochemistry 19:1887.PubMedCrossRefGoogle Scholar
  71. Op den Kamp, J. A. F., 1979, Lipid asymmetry in membranes, Anna. Rev. Biochem. 48:47.CrossRefGoogle Scholar
  72. Orly, J., and Schramm, M., 1975, Fatty acids as modulators of membrane functions: Cate-cholamine-activated adenylate cyclase of the turkey erythrocyte, Proc. Natl. Acad. Sci. USA 72:3433.PubMedCrossRefGoogle Scholar
  73. Pagano, R. E., Ozato, K., and Ruysschaert, J. M., 1977, Intracellular distribution of lipophilic fluorescent probes in mammalian cells, Biochim. Biophys. Acta 465:661.PubMedCrossRefGoogle Scholar
  74. Pessin, J. E., and Glaser, M., 1980, Budding of Rous sarcoma virus and vesicular stomatitis virus from localized lipid regions in the plasma membrane and chicken embryo fibroblasts, J. Biol. Chem. 255:9044.PubMedGoogle Scholar
  75. Pessin, J. E., Salter, D. W., and Glaser, M., 1978, Use of a fluorescent probe to compare the plasma membrane properties in normal and transformed cells: Evaluation of the interference by triacylglycerols and alkyldiacylglycerols, Biochemistry 17:1997.PubMedCrossRefGoogle Scholar
  76. Prendergast, F. G., Haugland, R. P., and Callahan, P. J., 1981, 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: Synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20:7333.PubMedCrossRefGoogle Scholar
  77. Pugh, E. L., Kates, M., and Szabo, A. G., 1982, Studies of fluorescence polarization of 1-acyl-2-cis or trans-parinaroyl-sn-3-glycerophorylcholines in model systems and microsomal membranes, Chem. Phys. Lipids 30:55.PubMedCrossRefGoogle Scholar
  78. Radda, G. K., and Vanderkooi, J., 1972, Can fluorescent probes tell us anything about membranes?, Biochim. Biophys. Acta 265:509.Google Scholar
  79. Rintoul, D. A., and Simoni, R. D., 1977, Incorporation of a naturally occurring fluorescent fatty acid into lipids of cultured mammalian cells, J. Biol. Chem. 252:7916.PubMedGoogle Scholar
  80. Rintoul, D. A., Chou, S.-M., and Silbert, D. F., 1979, Physical characterization of sterol-depleted LM-cell plasma membranes, J. Biol. Chem. 254:10070.PubMedGoogle Scholar
  81. Sandermann, H., Jr., 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta 515:209.PubMedGoogle Scholar
  82. Schachter, D., Cogan, U., and Abbott, R. E., 1982, Asymmetry of lipid dynamics in human erythrocyte membranes studied with permeant fluorophores, Biochemistry 21:2146.PubMedCrossRefGoogle Scholar
  83. Schroeder, F., 1978, Differences in fluidity between bilayer halves of tumor cell plasma membrane, Nature (London) 276:528.CrossRefGoogle Scholar
  84. Schroeder, F., 1980, Fluorescence probes as monitors of surface membrane fluidity gradients in murine fibroblasts, Eur. J. Biochem. 112:293.PubMedCrossRefGoogle Scholar
  85. Schroeder, F., and Goh, E. H., 1979, Regulation of very low density lipoprotein interior core lipid physicochemical properties, J. Biol. Chem. 254:2464.PubMedGoogle Scholar
  86. Schroeder, F., Goh, E. H., and Heimberg, M., 1979, Regulation of the surface physical properties of the very low density lipoprotein, J. Biol. Chem. 254:2456.PubMedGoogle Scholar
  87. Shaklai, N., Yguerabide, J., and Ranney, H. M., 1977, Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore, Biochemistry 16:5585.PubMedCrossRefGoogle Scholar
  88. Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367.PubMedGoogle Scholar
  89. Shinitzky, M., Dianoux, A.-C., Gitler, C, and Weber, G., 1971, Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I. Synthetic micelles, Biochemistry 10:2106.PubMedCrossRefGoogle Scholar
  90. Sklar, L. A., 1980, The partition of cis-parinaric acid and trans-parinaric acid among aqueous, fluid lipid, and solid lipid phases, Mol. Cell. Biochem. 32:169.PubMedCrossRefGoogle Scholar
  91. Sklar, L. A., and Doody, M. C, 1980, Differences in fluidity between bilayer halves of plasma cell membranes, Nature (London) 287:255.CrossRefGoogle Scholar
  92. Sklar, L. A., and Dratz, E. A., 1980, Analysis of membrane bilayer asymmetry using parinaric acid fluorescent probes, FEBS Lett. 118:308.PubMedCrossRefGoogle Scholar
  93. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1975, Conjugated polyene-fatty acids as membrane probes: Preliminary characterization, Proc. Natl. Acad. Sci. USA 72:1649.PubMedCrossRefGoogle Scholar
  94. Sklar, L. A., Hudson, B. S., Peterson, M., and Diamond, J., 1977a, Conjugated polyene fatty acids as fluorescent probes: Spectroscopic characterization, Biochemistry 16:813.PubMedCrossRefGoogle Scholar
  95. Sklar, L. A., Hudson, B. S., and Simoni, R. D., 1977b, Conjugated polyene fatty acids as fluorescent probes: Synthetic phospholipid membrane studies, Biochemistry 16:819.PubMedCrossRefGoogle Scholar
  96. Sklar, L. A., Miljanich, G. P., and Dratz, E. A., 1979a, Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid amond aqueous, solid lipid, and fluid lipid phases, Biochemistry 18:1707.PubMedCrossRefGoogle Scholar
  97. Sklar, L. A., Miljanich, G. P., Bürsten, S. L., and Dratz, E. A., 1979b, Thermal lateral phase separations in bovine retinal rod outer segment membranes and phospholipids as evidenced by parinaric acid fluorescence polarization and energy transfer, J. Biol. Chem. 254:9583.PubMedGoogle Scholar
  98. Sklar, L. A., Craig, I. F., and Pownall, H. J., 1980, Induced circular dichroism of incorporated fluorescent cholesteryl esters and polar lipids as a probe of human serum low density lipoprotein structure and melting, J. Biol. Chem. 256:4286.Google Scholar
  99. Sklar, L. A., Doody, M. C., Gotto, A. M., and Pownall, H. J., 1981, Serum lipoprotein structure: Resonance energy transfer localization of fluorescent lipid probes, Biochemistry 19:1294.CrossRefGoogle Scholar
  100. Snyder, B., and Freire, E., 1982, Fluorescence energy transfer in two dimensions: A numeric solution for random and nonrandom distribution, Biophys. J. 40:137.PubMedCrossRefGoogle Scholar
  101. Struck, D. K., and Pagano, R. E., 1980, Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell, J. Biol. Chem. 255:5404.PubMedGoogle Scholar
  102. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20:4093.PubMedCrossRefGoogle Scholar
  103. Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47:819.PubMedCrossRefGoogle Scholar
  104. Stubbs, G. W., Litman, B. J., and Barenholz, Y., 1976, Microviscosity of the hydrocarbon region of the bovine retinal rod outer segment disk membrane determined by fluorescent probe measurements, Biochemistry 15:2766.PubMedCrossRefGoogle Scholar
  105. Tank, D. W., Wu, E.-S., and Webb, W. W., 1982, Enhanced molecular diffusibility in muscle membrane blebs: Release of lateral constraints, J. Cell Biol. 92:207.PubMedCrossRefGoogle Scholar
  106. Tecoma, E. S., Sklar, L. A., Simoni, R. D., and Hudson, B. S., 1977, Conjugated polyene fatty acids as fluorescent probes: Biosynthetic incorporation of parinaric acid by Escherichia coli and studies of phase transitions, Biochemistry 16:829.PubMedCrossRefGoogle Scholar
  107. Thomas, D. D., and Hidalgo, C., 1978, Rotational motion of the sarcoplasmic reticulum Ca2+-ATPase, Proc. Natl. Acad. Sci. USA 75:5488.PubMedCrossRefGoogle Scholar
  108. Thomas, D. D., Carlsen, W. F., and Stryer, L., 1978, Fluorescence energy transfer in the rapid-diffusion limit, Proc. Natl. Acad. Sci. USA 75:5746.PubMedCrossRefGoogle Scholar
  109. Thulborn, K. R., and Sawyer, W. H., 1978, Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer, Biochim. Biophys. Acta 511:125.PubMedCrossRefGoogle Scholar
  110. Tsai, A., Hudson, B. S., and Simoni, R. D., 1981, Preparation of parinaric acid derivatives, Methods Enzymol. 35:483.CrossRefGoogle Scholar
  111. Uchida, T., Nagai, Y., Kawasaki, Y., and Wakayama, N., 1981, Fluorospectroscopic studies of various ganglioside and ganglioside-lecithin dispersions: Steady-state and time-resolved fluorescence measurements with 1,6-diphenyl-1,3,5-hexatriene, Biochemistry 20:162.PubMedCrossRefGoogle Scholar
  112. van-Blitterswijk, W. J., van Hoeven, R. P., and van der Meer, B. W., 1981, Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements, Biochim. Biophys. Acta 644:323.PubMedCrossRefGoogle Scholar
  113. Veatch, W. R., and Stryer, L., 1977, Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: A nanosecond fluorescence anisotropy study, J. Mol. Biol. 117:1109.PubMedCrossRefGoogle Scholar
  114. Weber, G., 1953, Rotational Brownian motion and polarization of the fluorescence of solutions, Adv. Protein Chem. 8:415.PubMedCrossRefGoogle Scholar
  115. Welti, R., 1982, Partition of parinaroyl phospholipids in mixed head group systems, Biochemistry 21:5690.PubMedCrossRefGoogle Scholar
  116. Welti, R., and Silbert, D. F., 1982, Partition of parinaroyl phospholipid probes between solid and fluid phases, Biochemistry 21:5685.PubMedCrossRefGoogle Scholar
  117. Welti, R., Rintoul, D. A., Goodsaid-Zalduondo, F., Felder, S., and Silbert, D. F., 1981, Gel phase phospholipid in the plasma membrane of sterol-depleted mouse LM cells, J. Biol. Chem. 256:7528.PubMedGoogle Scholar
  118. Wey, C.-L., Cone, R. A., and Edidin, M. A., 1981, Lateral diffusion of rhodopsin in photo-receptor cells measured by fluorescence photobleaching and recovery, Biophys. J. 33:225.PubMedCrossRefGoogle Scholar
  119. Wirtz, K. W. A., and van Deenen, L. L. M., 1977, Phospholipid-exchange proteins: A new class of intracellular lipoproteins, Trends Biochem. Sci. March 1977:49.Google Scholar
  120. Wisnieski, B. J., and Iwata, K. K., 1977, Electron spin resonance evidence for vertical asymmetry in animal cell membranes, Biochemistry 16:1321.PubMedCrossRefGoogle Scholar
  121. Wolber, P. K., and Hudson, B. S., 1979, An analytic solution to the Forster energy transfer problem in two dimensions, Biophys. J. 28:197.PubMedCrossRefGoogle Scholar
  122. Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers, Biochemistry 20:2800.PubMedCrossRefGoogle Scholar
  123. Zidovetzki, R., Yarden, Y., Schlessinger, J., and Jovin, T. M., 1981, Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors, Proc. Natl. Acad. Sci. USA 78:6981.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Larry A. Sklar
    • 1
  1. 1.Department of ImmunologyScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations