Advertisement

Dynamics of Membrane Lipids during Lymphocyte Stimulation by Mitogens

  • Ernst Ferber
Part of the Biomembranes book series (B, volume 12)

Abstract

The biochemical events which occur in activated lymphocytes have attracted a great number of studies. Since the activation of lymphocytes can be initiated not only by binding of specific antigens but also, more effectively, by mitogens (polyclonal ligands), this system is a preferred model of cell activation and control of differentiation.

Keywords

Arachidonic Acid Unsaturated Fatty Acid Sodium Cholate Phospholipid Metabolism Acceptor Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, D., and Michell, R. H., 1974, Phosphatidylinositol cleavage catalyzed by the soluble fraction from lymphocytes, Biochem. J. 142:591.PubMedGoogle Scholar
  2. Billah, M. M., Lapetina, E. G., and Cuatrecasas, P., 1981, Phospholipase A2 activity specific for phosphatidic acid: A possible mechanism for the production of arachidonic acid in platelets, J. Biol. Chem. 256:5399.PubMedGoogle Scholar
  3. Brandt, A. E., and Lands, W. E. M., 1967, The effect of acyl-group composition on the rate of acyltransferase-catalyzed synthesis of lecithin, Biochim. Biophys. Acta 144:605.PubMedGoogle Scholar
  4. Bremer, J., and Greenberg, D. M., 1961, Methyl transfering enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine), Biochim. Biophys. Acta 46:205.CrossRefGoogle Scholar
  5. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor, evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355.PubMedGoogle Scholar
  6. Dobson, P., and Mellors, A., 1980, Inhibition of acyltransferase in lymphocytes by concanavalin A, Biochim. Biophys. Acta 629:305.PubMedCrossRefGoogle Scholar
  7. Eibl, H., Hill, E. E., and Lands, W. E. M., 1969, The subcellular distribution of acyltransferases which catalyze the synthesis of phosphoglycerides, Eur. J. Biochem. 9:250.PubMedCrossRefGoogle Scholar
  8. Erbland, J. F., and Marinetti, G. V., 1965a, The enzymatic acylation and hydrolysis of lyso-lecithin, Biochim. Biophys. Acta 106:128.PubMedGoogle Scholar
  9. Erbland, J. F., and Marinetti, G. V., 1965b, The metabolism of lysolecithin in rat-liver parti-culate systems, Biochim. Biophys. Acta 106:139.PubMedGoogle Scholar
  10. Ferber, E., 1973, Phospholipid dynamics in plasma membranes, in: Biological Membranes, Vol. 2 (D. Chapman and D. F. H. Wallach, eds.), pp. 221–252, Academic Press, New York.Google Scholar
  11. Ferber, E., 1981, Dynamics of membrane proteins and lipids, in: Mechanisms of Lymphocyte Activation (K. Resch and H. Kirchner, eds.), pp. 5–10, Elsevier/North-Holland, Amsterdam.Google Scholar
  12. Ferber, E., and Resch, K., 1973, Phospholipid metabolism of stimulated lymphocytes: Activation of acyl-CoA: lysolecithin acyltransferases in microsomal membranes, Biochim. Biophys. Acta 296:335.PubMedGoogle Scholar
  13. Ferber, E., Resch, K., Wallach, D. F. H., and Imm, W., 1972, Isolation and characterization of lymphocyte plasma membranes, Biochim. Biophys. Acta 266:494.PubMedCrossRefGoogle Scholar
  14. Ferber, E., de Pasquale, G. G., and Resch, K., 1975, Phospholipid metabolism of stimulated lymphocytes: Composition of phospholipid fatty acids, Biochim. Biophys. Acta 398:364.PubMedGoogle Scholar
  15. Ferber, E., Reilly, C. E., and Resch, K., 1976, Phospholipid metabolism of stimulated lymphocytes: Comparison of the activation of acyl-CoA: lysolecithin acyltransferase with the binding of concanavalin A to thymocytes, Biochim. Biophys. Acta 448:143.PubMedCrossRefGoogle Scholar
  16. Ferber, E., Kröner, E., Schmidt, B., Fischer, H., Peskar, B. A., and Anders, C, 1980, Dynamics of membrane fatty acids during lymphocyte stimulation by mitogens, in: Membrane Fludity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 239–263, Humana Press, Clifton, N.J.Google Scholar
  17. Fisher, D. B., and Mueller, G. C, 1968, An early alteration in the phospholipid metabolism of lymphocytes by phytohemagglutinin, Proc. Natl. Acad. Sci. USA 60:1396.PubMedCrossRefGoogle Scholar
  18. Fisher, D. B., and Mueller, G. C., 1971, Studies on the mechanism by which phytohemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes, Biochim. Biophys. Acta 248:434.Google Scholar
  19. Flower, R. J., and Blackwell, G. J., 1976, The importance of phospholipase A2 in prostaglandin biosynthesis, Biochem. Pharmacol. 25:285.PubMedCrossRefGoogle Scholar
  20. Hirata, F., and Axelrod, J., 1978a, Enzymatic synthesis and rapid translocation of phospha-tidylcholine by two methyltransferases in erythrocyte membranes, Proc. Natl. Acad. Sci. USA 75:2348.PubMedCrossRefGoogle Scholar
  21. Hirata, F., and Axelrod, J., 1978b, Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity, Nature (London) 275:219.CrossRefGoogle Scholar
  22. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082.PubMedCrossRefGoogle Scholar
  23. Hirata, F., Strittmatter, W. J., and Axelrod, J., 1979, β-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and β-adrenergic reeeptor-adenylate cyclase coupling, Proc. Natl. Acad. Sci. USA 76:368.PubMedCrossRefGoogle Scholar
  24. Hirata, F., Toyoshima, S., Axelrod, J., and Waxdal, M. J., 1980, Phospholipid methylation: A biochemical signal modulating lymphocyte mitogenesis, Proc. Natl. Acad. Sci. USA 77:862.PubMedCrossRefGoogle Scholar
  25. Hong, S. L., Patton, G., and Deykin, D., 1979, Arachidonic acid level in cellular lipids determines the amount of prostaglandins synthesized during cell growth in tissue culture, Prostaglandins 17:53.PubMedCrossRefGoogle Scholar
  26. Humes, J. L., Bonney, R. J., Pelus, L., Dahlgren, M. E., Sadowski, S. J., Kuehl, F. A., and Davies, P., 1977, Macrophages synthesise and release prostaglandins in response to inflammatory stimuli, Nature (London) 269:149.CrossRefGoogle Scholar
  27. Irvine, R. F., and Dawson, R. M. C, 1979, Transfer of arachidonic acid between phospholipids in rat liver microsomes, Biochem. Biophys. Res. Commun. 91:1399.PubMedCrossRefGoogle Scholar
  28. Kannagi, R., Koizumi, K., and Masuda, T., 1981, Limited hydrolysis of platelet membrane phospholipids: On the proposed phospholipase-susceptible domain in platelet membranes, J. Biol. Chem. 256:1177.PubMedGoogle Scholar
  29. Kelly, J. P., and Parker, C. W., 1979, Effects of arachidonic acid and other unsaturated fatty acids on mitogenesis in human lymphocytes, J. Immunol. 122:1556.PubMedGoogle Scholar
  30. Kelly, J. P., Johnson, M. C, and Parker, C. W., 1979, Effects of inhibitors of arachidonic acid metabolism on mitogenesis in human lymphocytes: Possible role of thromboxanes and products of the lipoxygenase pathway, J. Immunol. 122:1563.PubMedGoogle Scholar
  31. Kröner, E. E., Peskar, B. A., Fischer, H., and Ferber, E., 1981, Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases, J. Biol. Chem. 256:3690.PubMedGoogle Scholar
  32. Lands, W. E. M., 1965, Lipid metabolism, Annu. Rev. Biochem. 34:313.PubMedCrossRefGoogle Scholar
  33. Lands, W. E. M., and Hart, P., 1965, Metabolism of glycerolipids. VI. Specificities of acyl-CoA: phospholipid acyltransferases, J. Biol. Chem. 240:1905.PubMedGoogle Scholar
  34. Lands, W. E. M., and Samuelsson, B., 1968, Phospholipid precursors of prostaglandins, Biochim. Biophys. Acta 164:426.PubMedGoogle Scholar
  35. Lapetina, E. G., Billah, M. M., and Cuatrecasas, P., 1981, The phosphatidylinositol cycle and regulation of arachidonic acid production, Nature (London) 292:367.CrossRefGoogle Scholar
  36. Lucas, D. O., Shohet, S. B., and Merler, E., 1971, Changes in phospholipid metabolism which occur as a consequence of mitogenic stimulation of lymphocytes, J. Immunol. 106:768.PubMedGoogle Scholar
  37. Maino, V. C., Hayman, M. J., and Crumpton, M. J., 1975, Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens, Biochem. J. 146:247.PubMedGoogle Scholar
  38. Meade, C. J., and Mertin, J., 1978, Fatty acids and immunity, Adv. Lipid Res. 16:127.PubMedGoogle Scholar
  39. Mertin, J., and Hughes, D., 1975, Specific inhibitory action of polyunsaturated fatty acids on lymphocyte transformation induced by PHA and PPD, Int. Arch. Allergy Appl. Immunol. 48:203.PubMedCrossRefGoogle Scholar
  40. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81.PubMedGoogle Scholar
  41. Michell, R. H., 1979, Inositol phospholipids in membrane function, Trends Biochem. Sci. 4:128.CrossRefGoogle Scholar
  42. Mizel, S. B., Oppenheim, J. J., and Rosenstreich, D. L., 1978, Characterization of lymphocyte-activating factor (LAF) produced by the macrophage cell line, P388D1. I. Enhancement of LAF production by activated T lymphocytes, J. Immunol. 120:1497.PubMedGoogle Scholar
  43. Munder, P. G., Ferber, E., Modolell, M., and Fischer, H., 1969, The influence of various adjuvants on the metabolism of phospholipids in macrophages, Int. Arch. Allergy Appl. Immunol. 36:117.PubMedCrossRefGoogle Scholar
  44. Northoff, H., Dörken, B., and Resch, K., 1978, Ligand-dependent modulation of membrane phospholipid metabolism in ConA-stimulated lymphocytes, Exp. Cell Res. 113:189.PubMedCrossRefGoogle Scholar
  45. Oppenheim, J. J., Mizel, S. B., and Meltzer, M. S., 1979, Biological effects of lymphocyte and macrophage-derived mitogenic amplification factors, in: Biology of the Lymphokines (S. Cohen, E. Pick, and J. J. Oppenheim, eds.), pp. 291–323, Academic Press, New York.Google Scholar
  46. Parker, C. W., 1981, Arachidonic acid metabolism in activated lymphocytes in: Mechanisms of Lymphocyte Activation (K. Resch and H. Kirchner, eds.), pp. 47–57, Elsevier/North-Holland, Amsterdam.Google Scholar
  47. Parker, C. W., Stenson, W. F., Huber, M. G., and Kelly, J. P., 1979a, Formation of throm-boxane B2 and hydroxyarachidonic acids in purified human lymphocytes in the presence and absence of PHA, J. Immunol. 122:1572.PubMedGoogle Scholar
  48. Parker, C. W., Kelly, J. P., Falkenhein, S. F., and Huber, M. G., 1979b, Release of arachidonic acid from human lymphocytes in response to mitogenic lectins, J. Exp. Med. 149:1487.PubMedCrossRefGoogle Scholar
  49. Resch, K., 1976, Membrane associated events in lymphocyte activation, in: Receptors and Recognition, Series A, Vol. 1 (P. Cuatrecasas and M. F. Greaves, eds.), pp. 61–117, Chapman & Hall, London/Halsted Press, New York.Google Scholar
  50. Resch, K., and Ferber, E., 1972, Phospholipid metabolism of stimulated lymphocytes: Effects of phytohemagglutinin, concanavalin A and an anti-immunoglobulin serum, Eur. J. Biochem. 27:153.PubMedCrossRefGoogle Scholar
  51. Resch, K., and Ferber, E., 1975, The role of phospholipids in lymphocyte activation, in: Immune Recognition (A. S. Rosenthal, ed.), pp. 281–312, Academic Press, New York.Google Scholar
  52. Resch, K., Gelfand, E. W., Hansen, K., and Ferber, E., 1972, Lymphocyte activation: Rapid changes in the phospholipid metabolism of plasma membranes during stimulation, Eur. J. Immunol. 2:598.PubMedCrossRefGoogle Scholar
  53. Resch, K., Heckmann, B., Schober, I., Bärlin, E., and Gemsa, D., 1981, The role of macrophages in the activation of T lymphocytes by concanavalin A. II. Macrophage-independent activation, Eur. J. Immunol. 11:120.PubMedCrossRefGoogle Scholar
  54. Rittenhouse-Simmons, S., Russel, F. A., and Deykin, D., 1977, Mobilization of arachidonic acid in human platelets: Kinetics and Ca2+ dependency, Biochim. Biophys. Acta 488:370.PubMedGoogle Scholar
  55. Sarzala, M. G., van Golde, L. M. G., de Kruyff, B., and van Deenen, L. L. M., 1970, The intramitochondrial distribution of some enzymes involved in the biosynthesis of rat-liver phospholipids, Biochim. Biophys. Acta 202:106.PubMedGoogle Scholar
  56. Scott, W. A., Zrike, J. M., Hamill, A. L., Kempe, J., and Cohn, Z. A., 1980, Regulation of arachidonic acid metabolites in macrophages, J. Exp. Med. 152:324.PubMedCrossRefGoogle Scholar
  57. Stenson, W. F., and Parker, C. W., 1979a, Metabolism of arachidonic acid in ionophore-stimulated neutrophils: Esterification of a hydroxylated metabolite into phospholipids, J. Clin. Invest. 64:1457.PubMedCrossRefGoogle Scholar
  58. Stenson, W. F., and Parker, C. W., 1979b, 12-1-Hydroxy-5,8,10,14-eicosatetraenoic acid, a chemotactic fatty acid, is incorporated into neutrophil phospholipids and triglycéride, Prostaglandins 18:285.PubMedCrossRefGoogle Scholar
  59. Stoffel, W., Schiefer, H.-G., and Wolf, G. D., 1966, Untersuchungen über die Biosynthese von Membranphospholipoiden: Acylierung des Lysolecithins und der Lysophosphatidsäure durch Polyenfettsäuren, Hoppe Seyler’s Z. Physiol. Chem. 347:102.PubMedCrossRefGoogle Scholar
  60. Stoffel, W., de Tomas, M. E., and Schiefer, H.-G., 1967, Die enzymatische Acylierung von Lysophosphatidsäure, gesättigtem und ungesättigtem Lysolecithin, Hoppe Seyler’s Z. Physiol. Chem. 348:882.PubMedCrossRefGoogle Scholar
  61. Sugiura, T., Masuzava, Y., and Waku, K., 1980, Alkenyl and alkyl ether phospholipids in pig mesenteric lymph node lymphocytes, Lipids 15:475.PubMedCrossRefGoogle Scholar
  62. Szamel, M., and Resch, K., 1981, Modulation of enzyme activities in isolated lymphocyte plasma membranes by enzymatic modification of phospholipid fatty acids, J. Biol. Chem. 256:11618.PubMedGoogle Scholar
  63. Szamel, M., Schneider, S., and Resch, K., 1981, Functional interrelationship between (Na+ + K+ )-ATPase and lysolecithin acyltransferase in plasma membranes of mitogen-stimulated rabbit thymocytes, J. Biol. Chem. 256:9198.PubMedGoogle Scholar
  64. Toyoshima, S., and Osawa, T., 1976, Cholesterol inhibition of the temporary increase of membrane fluidity of lymphocytes induced by mitogenic lectins, Exp. Cell Res. 102:438.PubMedCrossRefGoogle Scholar
  65. Trotter, J., and Ferber, E., 1981, CoA-dependent cleavage of arachidonic acid from phospha-tidylcholine and transfer to phosphatidylethanolamine in homogenates of murine thymocytes, FEBS Lett. 128:237.PubMedCrossRefGoogle Scholar
  66. Trotter, J., Flesch, I., Schmidt, B., and Ferber, E., 1982, Acyltransferase-catalyzed cleavage of arachidonic acid from phospholipids and transfer to lysophosphatides in lymphocytes and macrophages, J. Biol. Chem. 257:1816.PubMedGoogle Scholar
  67. Vance, D. E., and de Kruijff, B., 1980, The possible functional significance of phosphatidylethanolamine methylation, Nature (London) 288:277.CrossRefGoogle Scholar
  68. van den Bosch, H., van Golde, L. M. G., Eibl, H., and van Deenen, L. L. M., 1967, The acylation of l-acylglycero-3-phosphorylcholines by rat-liver microsomes, Biochim. Biophys. Acta 144:613.PubMedGoogle Scholar
  69. van den Bosch, H., van Golde, L. M. G., Slotboom, A. J., and van Deenen, L. L. M., 1968, The acylation of isomeric monoacyl phosphatidylcholines, Biochim. Biophys. Acta 152:694.Google Scholar
  70. Vogt, W., 1978, Role of phospholipase A2 in prostaglandin formation, in: Phospholipases and Prostaglandins (C. Galli, G. Galli, and G. Porcellati, eds.), pp. 89–95, Raven Press, New York.Google Scholar
  71. Weidemann, M. J., Peskar, B. A., Wrogemann, K., Rietschel, E. T., Staudinger, H., and Fischer, H., 1978, Prostaglandin and thromboxane synthesis in a pure macrophage population and the inhibition by E-type prostaglandins of chemiluminescence, FEBS Lett. 89:136.PubMedCrossRefGoogle Scholar
  72. Weyman, C., Morgan, S. J., Belin, J., and Smith, A. D., 1977, Phytohaemagglutinin stimulation of human lymphocytes: Effect of fatty acids on uridine uptake and phosphoglyceride fatty acid profile, Biochim. Biophys. Acta 496:155.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ernst Ferber
    • 1
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburgWest Germany

Personalised recommendations