Glycosphingolipid Domain Formation and Lymphocyte Activation

  • C. Curtain
Part of the Biomembranes book series (B, volume 12)


When normal lymphocytes are incubated in tissue culture medium with certain substances, they are stimulated to differentiate into blast cells which may then proliferate. This process of activation in vitro can be induced by at least five different types of agents: (1) specific antigens which may stimulate lymphocytes from sensitized donors; (2) allogeneic lymphocytes (the mixed lymphocyte reaction); (3) anti-immunoglobulin antibodies; (4) anti-lymphocyte antibodies; and (5) the nonspecific mitogens which include the plant lectins phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen, certain microbial products, and chemical agents such as potassium periodate.


Electron Spin Resonance Acyl Chain Cholera Toxin Spin Label Lymphocyte Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach, D., and Sela, B.-A., 1980, A differential scanning calorimetry study of the interaction of gangliosides with peanut lectin, serotonin and daunomycin, Biochim. Biophys. Acta 596:186.PubMedCrossRefGoogle Scholar
  2. Barenholz, Y., Moore, N. F., and Wagner, R. R., 1976, Enveloped viruses as model membrane systems: Microviscosity of vesicular stomatitis virus and host cell membranes, Biochemistry 15:3565.Google Scholar
  3. Barnett, R. E., Scott, R. E., Furcht, L. T., and Kersey, J. H., 1974, Evidence that mitogenic lectins induce changes in lymphocyte membrane fluidity, Nature (London) 249:465.CrossRefGoogle Scholar
  4. Bashford, C. L., Morgan, C. S., and Radda, G. K., 1976, Measurement and interpretation of fluorescence polarizations in phospholipid dispersions, Biochim. Biophys. Acta 426:157.PubMedCrossRefGoogle Scholar
  5. Beadling, L., and Rothfield, L. I., 1978, Modulation of the conformation of a membrane glycosyl transferase by specific lipids, Proc. Natl. Acad. Sci. USA 75:3669.PubMedCrossRefGoogle Scholar
  6. Bottomley, J. M., Kramers, M. T. C, and Chapman, D., 1980, Cholesterol depletion from biomembranes of murine lymphocytes and human tonsil lymphocytes, FEBS Lett. 119:261.PubMedCrossRefGoogle Scholar
  7. Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. USA 74:5031.PubMedCrossRefGoogle Scholar
  8. Bourguignon, L. Y. W., Tokyasu, K. T., and Singer, S. J., 1978, The capping of lymphocytes and other cells studied by an improved method of immunofluorescence staining of frozen sections, J. Cell Physiol. 95:239.PubMedCrossRefGoogle Scholar
  9. Bunow, M. R., and Bunow, B., 1979, Phase behaviour of ganglioside-lecithin mixtures, Biophys. J. 27:325.PubMedCrossRefGoogle Scholar
  10. Chen, S. S.-H., and Keenan, R. M., 1977, Effect of phosphatidylcholine liposomes on the mitogen-stimulated lymphocyte activation, Biochem. Biophys. Res. Commun. 79:852.PubMedCrossRefGoogle Scholar
  11. Coffey, R. G., Hadden, E. M., and Hadden, J. W., 1977, Evidence for cyclic GMP and calcium mediation of lymphocyte activation by mitogens, J. Immunol. 119:1387.PubMedGoogle Scholar
  12. Cone, R. E., and Brown, W., 1976, Isolation of membrane-associated immunoglobulins from T-lymphocytes by non-ionic detergents, Immunochemistry 13:571.PubMedCrossRefGoogle Scholar
  13. Cone, R. E., and Marchalonis, J. J., 1974, Surface proteins of thymus-derived lymphocytes and bone marrow derived lymphocytes: Selective isolation of immunoglobulins and the theta antigen by non-ionic detergents, Biochem. J. 140:135.Google Scholar
  14. Correa, M., Miller, H. C, and Esselman, W. J., 1980, Antigen induced modulation by shed lymphocyte membrane gangliosides, Immunol. Commun. 9:543.PubMedGoogle Scholar
  15. Curtain, C. C, 1979, Lymphocyte surface modulation and glycosphingolipids, Immunology 36:805.PubMedGoogle Scholar
  16. Curtain, C. C., Looney, F. D., Marchalonis, J. J., and Raison, J. K., 1978, Changes in lipid ordering and state of aggregation in lymphocyte plasma membranes after exposure to mitogens, J. Membr. Biol. 44:211.PubMedCrossRefGoogle Scholar
  17. Curtain, C. C., Looney, F. D., and Smelstorius, J. A., 1980, Lipid domain formation and ligand-induced lymphocyte membrane changes, Biochim. Biophys. Acta 596:43.PubMedCrossRefGoogle Scholar
  18. Curtain, C. C., Looney, F. D., and Smelstorius, J. A., 1981, Glycosphingolipid clustering and mast cell degranulation, Int. Arch. Allergy Appl. Immunol. 65:34.PubMedCrossRefGoogle Scholar
  19. Decker, J. M., and Marchalonis, J. J., 1978, Molecular events in lymphocyte activation: Role of non-histone chromosomal proteins in regulating gene expression, in: Contemporary Topics in Molecular Immunology (R. A. Reisfeld and F. P. Inman, eds.), pp. 365–413, Plenum Press, New York.Google Scholar
  20. de Petris, S., and Raff, M. C, 1973, Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy, Nature New Biol. 241:257.PubMedGoogle Scholar
  21. Diener, E., and Paetkau, V. H., 1972, Antigen recognition: Early surface-receptor phenomena induced by binding of a tritium-labelled antigen, Proc. Natl. Acad. Sci. USA 69:2364.PubMedCrossRefGoogle Scholar
  22. Dodd, N. J. F., 1975, PHA and lymphocyte membrane fluidity, Nature (London) 257:827.CrossRefGoogle Scholar
  23. Dray, S., Young, G. O., and Gerald, L., 1963, Immunochemical identification and genetics of rabbit immunoglobulin allotypes, J. Immunol. 91:403.PubMedGoogle Scholar
  24. Earp, H. S., Utsinger, P. D., Yount, W. J., Logue, M., and Steiner, A. L., 1977, Correlation of cyclic adenosine 3′:5′ monophosphate and immunoglobulin immunofluorescence during lymphocyte capping, J. Exp. Med. 145:1087.PubMedCrossRefGoogle Scholar
  25. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192:218.PubMedCrossRefGoogle Scholar
  26. Engelhard, V. H., Glaser, M., and Storm, D. R., 1978, Effect of membrane phospholipid compositional changes on adenylate cyclase in LM cells, Biochemistry 17:3191.PubMedCrossRefGoogle Scholar
  27. Esko, J. D., Gilmore, J. R., and Glaser, M., 1977, Use of a fluorescent probe to determine the viscosity of LM cell membranes with altered phospholipid compositions, Biochemistry 16:1881.PubMedCrossRefGoogle Scholar
  28. Esselman, W. J., and Miller, H. C., 1977, Modulation of B-cell responses by glycolipid released from antigen-stimulated T cells, J. Immunol. 119:1994.PubMedGoogle Scholar
  29. Farias, R. N., Bloj, B., Morero, R. D., Sineriz, F., and Trucco, R. E., 1975, Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition, Biochim. Biophys. Acta 451:231.Google Scholar
  30. Feizi, T., Childs, R. A., Hakomori, S.-L, and Powell, M. E., 1978, Blood-group-Ii-active gan-gliosides of human erythrocyte membranes, Biochem. J. 173:245.PubMedGoogle Scholar
  31. Feizi, T., Kapadia, A., and Yount, W. J., 1980, I and i antigens of human peripheral blood lymphocytes cocap with receptors for concanavalin A, Proc. Natl. Acad. Sci. USA 77:376.PubMedCrossRefGoogle Scholar
  32. Ferber, E., and Resch, K., 1973, Phospholipid metabolism of stimulated lymphocytes: Activation of acyl-CoA:lysolecithin acyl transferases in microsomal membranes, Biochim. Biophys. Acta 296:335.PubMedGoogle Scholar
  33. Ferber, E., de Pasquale, G. E., and Resch, K., 1975, Phospholipid metabolism of stimulated lymphocytes: Composition of phospholipid fatty acids, Biochim. Biophys. Acta 398:364.PubMedGoogle Scholar
  34. Gabbiani, G., Chapponnier, C., Zumbe, A., and Vassalli, P., 1977, Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes, Nature (London) 269:697.CrossRefGoogle Scholar
  35. Gardas, A., and Koscielak, J., 1973, A new form of A-, B-, and H-blood-group-active substances extracted from erythrocyte membranes, Eur. J. Biochem. 32:178.PubMedCrossRefGoogle Scholar
  36. Gardas, A., and Koscielak, J., 1974, Megaloglycolipids—Unusually complex glycosphingolipids of human erythrocyte membrane with A-, B-, H-and I-blood group specificity, FEBS Lett. 42:101.PubMedCrossRefGoogle Scholar
  37. Geiger, B., and Singer, S. J., 1979, The participation of α-actinin in the capping of cell membrane components, Cell 16:213.PubMedCrossRefGoogle Scholar
  38. Gottfried, E. L. L., 1972, Lipid patterns of leukocytes in health and disease, Semin. Hematol. 9:241.PubMedGoogle Scholar
  39. Green, D. E., Fry, M., and Blondin, G. A., 1980, Phospholipids as molecular instruments of ion and solute transport in biological membranes, Proc. Natl. Acad. Sci. USA 77:257.PubMedCrossRefGoogle Scholar
  40. Green, W. C., Parker, C. M., and Parker, C. W., 1976, Calcium and lymphocyte activation, Cell. Immunol. 25:74.CrossRefGoogle Scholar
  41. Griffith, O. H., and Jost, P. C, 1976, Lipid spin labels in biological membranes, in: Spin Labelling: Theory and Applications (L. J. Berliner, ed.), pp. 454–524, Academic Press, New York.Google Scholar
  42. Hadden, J. W., Hadden, E. M., Haddox, M. K., and Goldberg, N. D., 1972, Guanosine 3′:5′-cyclic monophosphate: A possible intracellular mediator of mitogenic influences in lymphocytes, Proc. Natl. Acad. Sci. USA 69:3024.PubMedCrossRefGoogle Scholar
  43. Hadden, J. W., Hadden, E. M., Coffey, R. G., and Sadlik, J. R., 1976, Effects of concanavalin A and succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels, Proc. Natl. Acad. Sci. USA 73:1717.PubMedCrossRefGoogle Scholar
  44. Higgins, T. J., and Parish, C. R., 1980, Extraction of the carbohydrate-defined class of Ia antigens from murine spleen cells and serum, Mol. Immunol. 17:1065.PubMedCrossRefGoogle Scholar
  45. Higgins, T. J., Parish, C. R., Hogarth, P. M., McKenzie, I. F. C, and Hammerling, G. J., 1980, Demonstration of carbohydrate and protein determined la antigens by monoclonal antibodies, Immunogenetics 11:467.PubMedCrossRefGoogle Scholar
  46. Hollenberg, M. D., Fishman, P. H., Bennett, V., and Cuatrecasas, P., 1974, Cholera toxin and cell growth: Role of membrane gangliosides, Proc. Natl. Acad. Sci. USA 71:4224.PubMedCrossRefGoogle Scholar
  47. Inbar, M., 1976, Fluidity of membrane lipids: A single cell analysis of mouse normal lymphocytes and malignant lymphoma cells, FEBS Lett. 67:180.PubMedCrossRefGoogle Scholar
  48. Inbar, M., and Shinitzky, M., 1975, Decrease in microviscosity of lymphocyte surface membrane associated with stimulation induced by concanavalin A, Eur. J. Immunol. 5:66.CrossRefGoogle Scholar
  49. Ishizaka, T., Chang, T. H., Taggart, M., and Ishizaka, K., 1977, Histamine release from rat mast cells by antibodies against rat basophilic leukemia cell membrane, J. Immunol. 119:1589.PubMedGoogle Scholar
  50. Israelachvili, J., 1977, The packing of lipids and proteins in membranes, in: The Evolution of Light Trapping Systems (D. W. Deamer, ed.), pp. 91–107, Academic Press, New York.Google Scholar
  51. Ji, T. H., 1974, Crosslinking of glycolipids in erythrocyte ghost membrane, J. Biol. Chem. 249:7841.PubMedGoogle Scholar
  52. Jost, P., Waggoner, A. S., and Griffith, O. H., 1971, Spin Labelling and Membrane Structure, in: Structure and Function of Biological Membranes (L. Rothfield, ed.), pp. 83–144, Academic Press, New York.Google Scholar
  53. Kahn, C. R., Baird, K., Jarrett, D. B., and Flier, J. S., 1978, Direct demonstration that receptor crosslinking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. USA 75:4209.PubMedCrossRefGoogle Scholar
  54. Karnovsky, M. J., Unanue, E. R., and Leventhal, M., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. I. Mapping of surface moieties, J. Exp. Med. 136:907.PubMedCrossRefGoogle Scholar
  55. Kay, J. E., 1972, Lymphocyte stimulation by phytohaemagglutinin: Role of early stimulation of potassium uptake, Exp. Cell Res. 71:245.PubMedCrossRefGoogle Scholar
  56. King, C. A., and van Heyningen, W. E., 1973, Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside, J. Infect. Dis. 127:639.PubMedCrossRefGoogle Scholar
  57. Koscielak, J., Miller-Podraza, H., Krauze, R., and Piasek, A., 1976, Isolation and characterization of poly(glycosyl) ceramides (megaloglycolipids) with A, H and I blood-group activities, Eur. J. Biochem. 71:9.PubMedCrossRefGoogle Scholar
  58. Lee, P. M., Ketis, N. V., Barber, K. R., and Grant, C. W. M., 1980, Ganglioside headgroup dynamics, Biochim. Biophys. Acta 601:302.PubMedCrossRefGoogle Scholar
  59. Lichtman, A., Segel, G. B., and Lichtman, M. A., 1980, Total and exchangeable calcium in mitogen-treated lymphocytes, in: The Molecular Basis of Immune Cell Function (J. G. Kaplan, ed.), pp. 417–419, Elsevier/North-Holland, Amsterdam.Google Scholar
  60. Ling, N. R., and Kay, J. E., 1975, Lymphocyte Stimulation, North-Holland, Amsterdam.Google Scholar
  61. Loor, F., 1974, Binding and redistribution of lectins on lymphocyte membrane, Eur. J. Immunol. 4:210.PubMedCrossRefGoogle Scholar
  62. McKenzie, I. F. C., Clarke, A. E., and Parish, C. R., 1977, la antigenic specificities are oligosaccharide in nature: Hapten inhibition studies, J. Exp. Med. 145:1039.PubMedCrossRefGoogle Scholar
  63. McMurchie, E. J., and Raison, J. K., 1979, Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes, Biochim. Biophys. Acta 554:364.PubMedCrossRefGoogle Scholar
  64. Marchalonis, J. J., 1975, Lymphocyte surface immunoglobulin, Science 190:20.PubMedCrossRefGoogle Scholar
  65. Mély-Goubert, B., and Freedman, M. H., 1980, Lipid fluidity and membrane protein monitoring using 1,6-diphenyl-1,3,5-hexatriene, Biochim. Biophys. Acta 601:315.PubMedCrossRefGoogle Scholar
  66. Miller, H. C, and Esselman, W. J., 1975, Modulation of the immune response by antigen-reactive lymphocytes following cultivation with gangliosides, J. Immunol. 115:839.PubMedGoogle Scholar
  67. Muchmore, A. V., Decker, J. M., and Blaese, R. M., 1980, Evidence that specific oligosac-charides block early events necessary for the expression of antigen-specific proliferation by human lymphocytes, J. Immunol. 125:1306.PubMedGoogle Scholar
  68. Nairn, R. C, and Rolland, J. M., 1980, Fluorescent probes to detect lymphocyte activation, Clin. Exp. Immunol. 39:1.PubMedGoogle Scholar
  69. Nairn, R. C., Rolland, J. M., Halliday, G. M., Jablonka, I. M., and Ward, H. A., 1978, Fluorescent probes to monitor early lymphocyte activation, in: Immunofluorescence and Related Staining Techniques (W. Knapp, K. Holubar, and G. Wick, eds.), pp. 57–66, Elsevier/ North-Holland, Amsterdam.Google Scholar
  70. Nairn, R. C., Jablonka, I. M., Rolland, J. M., Halliday, G. M., and Ward, H. A., 1979, Rhodamine as a fluorescent probe of lymphocyte activation, Immunology 36:235.PubMedGoogle Scholar
  71. Neuringer, L. J., Sears, B., and Jungalwala, F. B., 1979, Deuterium NMR studies of cerebro-side-phospholipid bilayers, Biochim. Biophys. Acta 558:325.PubMedCrossRefGoogle Scholar
  72. Nicolson, G. L., 1976, Transmembrane control of receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components, Biochim. Biophys. Acta 457:57.PubMedGoogle Scholar
  73. O’Neill, H. C., Parish, C. R., and Higgins, T. J., 1981, Monoclonal antibody detection of carbohydrate-defined and protein-defined H-2k antigens, Mol. Immunol. 18:663.PubMedCrossRefGoogle Scholar
  74. Parish, C. R., and McKenzie, I. F. C, 1978, A detailed serological analysis of xenogeneic anti-Ia serum, Immunogenetics 6:183.CrossRefGoogle Scholar
  75. Parish, C. R., Chilcott, A. B., and McKenzie, I. F. C, 1976a, Low molecular-weight Ia antigens in normal mouse serum. I, Immunogenetics 3:113.CrossRefGoogle Scholar
  76. Parish, C. R., Jackson, D. C, and McKenzie, I. F. C, 1976b, Low molecular-weight Ia antigens in normal mouse serum. Ill, Immunogenetics 3:455.CrossRefGoogle Scholar
  77. Parish, C. R., Jackson, D. C, and McKenzie, I. F. C, 1978, Evidence that Ia antigenic specificities are defined by carbohydrate, in: Ir Genes and Ia Antigens (H. O. McDevitt, ed.), pp. 243–253, Academic Press, New York.Google Scholar
  78. Parish, C. R., Higgins, T. J., and McKenzie, I. F. C, 1981, Lymphocytes express Ia antigens of foreign haplotype following treatment with neuraminidase, Immunogenetics 12:1.PubMedCrossRefGoogle Scholar
  79. Pascher, I., 1976, Molecular rearrangements in sphingolipids: Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability, Biochim. Biophys. Acta 455:433.PubMedCrossRefGoogle Scholar
  80. Resch, K., 1976, Membrane associated events in lymphocyte activation, in: Receptors and Recognition, Ser. A, Vol. 1 (P. Cuatrecasas and M. F. Greaves, eds.), pp. 59–117, Chapman & Hall, London.Google Scholar
  81. Revesz, T., and Greaves, M., 1975, Ligand-induced redistribution of lymphocyte membrane ganglioside GM1, Nature (London) 257:103.CrossRefGoogle Scholar
  82. Rolland, J. M., Betts, R. L., Halliday, G. M., Hocking, G. R., and Nairn, R. C, 1981, Early changes in concanavalin A-stimulated lymphocytes detected by the fluorescent probe N-phenyl-1-naphthylamine, Cell Tissue Res. 214:119.PubMedCrossRefGoogle Scholar
  83. Ryan, J. L., and Shinitzky, M., 1979, Possible role for glycosphingolipids in the control of immune responses, Eur. J. Immunol. 9:171.PubMedCrossRefGoogle Scholar
  84. Sackman, E., Traeuble, H., Galla, H., and Overath, P., 1973, Lateral diffusion, protein mobility and phase transitions in Escherichia coli membranes: A spin label study, Biochemistry 12:5360.CrossRefGoogle Scholar
  85. Sakakibara, K., Momoi, T., Uchida, T., and Nagai, Y., 1981, Evidence for association of glycosphingolipid with a colchicine-sensitive mictotubule-like cytoskeletal structure of cultured cells, Nature (London) 293:76.CrossRefGoogle Scholar
  86. Sandermann, H., Jr., 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta 515:209.PubMedGoogle Scholar
  87. Sauerheber, R. D., Gordon, L. M., Crosland, R. D., and Kuwahara, M. D., 1977, Spin-label studies on rat liver and heart plasma membranes: Do probe-probe interactions interfere with the measurement of membrane properties?, J. Membr. Biol. 31:131.PubMedCrossRefGoogle Scholar
  88. Schlessinger, J., Schechter, Y., Willingham, M. C, and Pastan, I., 1978, Direct visualization of binding, aggregation and internalization of insulin and epidermal growth factor on living fibroblastic cells, Proc. Natl. Acad. Sci. USA 75:2659.PubMedCrossRefGoogle Scholar
  89. Schlievert, P. M., Schoettle, D. J., and Watson, D. W., 1980, Ganglioside and monosaccharide inhibition of nonspecific lymphocyte mitogenicity by group A streptococcal pyrogenic ex-otoxins, Infect. Immun. 27:276.PubMedGoogle Scholar
  90. Schmidt, C. F., Barenholz, Y., Huang, C, and Thompson, T. E., 1978, Monolayer coupling in sphingomyelin bilayer systems, Nature (London) 271:775.CrossRefGoogle Scholar
  91. Schreier, S., Polnaszek, C. F., and Smith, I. C. P., 1978, Spin labeis in membranes: Problems in practice, Biochim. Biophys. Acta 515:395.PubMedGoogle Scholar
  92. Schwarting, G. A., 1980, Quantitative analysis of neutral glycosphingolipids from human lymphocyte subpopulations, Biochem. J. 189:407.PubMedGoogle Scholar
  93. Schwarting, G. A., and Marcus, D. M., 1979, Cell surface glycosphingolipids of normal and leukemic human lymphocytes, Clin. Immunol. Immunopathol. 14:121.PubMedCrossRefGoogle Scholar
  94. Seelig, A., and Seelig, J., 1977, Effect of a single cis double bond on the structure of a phos-pholipid bilayer, Biochemistry 16:45.PubMedCrossRefGoogle Scholar
  95. Sela, B.-A., 1980, Splenocytes incorporated with exogenous gangliosides induce a mixed lymphocyte reaction in autologous lymphocytes, Cell. Immunol. 49:196.PubMedCrossRefGoogle Scholar
  96. Sela, B.-A., Raz, A., and Geiger, B., 1978, Antibodies to ganglioside GM1 induce mitogenic stimulation and cap formation in rat thymocytes, Eur. J. Immunol. 8:268.PubMedCrossRefGoogle Scholar
  97. Sell, S., and Gell, P. G. H., 1965, Studies on rabbit lymphocytes in vitro. I. Stimulation of blast transformation with an antiallotype serum, J. Exp. Med. 122:423.PubMedCrossRefGoogle Scholar
  98. Sharom, F. J., and Grant, C. W. M., 1978, A model for ganglioside behaviour in cell membranes, Biochim. Biophys. Acta 507:280.PubMedCrossRefGoogle Scholar
  99. Sharon, N., 1979, Some biological functions of cell surface sugars, in: Structure and Function of Biomembranes, Proc. Congr. Fed. Asian Oceanian Biochem. 1st, pp. 63-82.Google Scholar
  100. Shinitzky, M., and Inbar, M., 1974, Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells, J. Mol. Biol. 85:603.PubMedCrossRefGoogle Scholar
  101. Sia, D. Y., and Parish, C. R., 1981, Anti-self receptors. IV. H-2 restricted receptors on thymocytes recognize carbohydrate structures on target cells, Immunogenetics 12:587.PubMedCrossRefGoogle Scholar
  102. Sillerud, L. O., Schäfer, D. E., Yu., R. K., and Königsberg, W. H., 1979, Calorimetric properties of mixtures of ganglioside GM1 and dipalmitoyl phosphatidyl choline, J. Biol. Chem. 254:10876.PubMedGoogle Scholar
  103. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  104. Skarjune, R., and Oldfield, E., 1979, Physical studies of cell surface and cell membrane structure: Deuterium nuclear magnetic resonance investigation of deuterium-labelled N-hexadecanoylgalactosylceramides (cerebrosides), Biochim. Biophys. Acta 556:208.PubMedCrossRefGoogle Scholar
  105. Slomiany, B. L., and Slomiany, A., 1977, Complex glycosphingolipids with blood group A specificity, FEBS Lett. 73:175.PubMedCrossRefGoogle Scholar
  106. Smith, I. C. P., Stockton, G. W., Tulloch, A. P., Polnaszek, C. F., and Johnson, K. E., 1977, Deuterium NMR and spin label ESR as probes of membrane organization, J. Colloid Interface Sci. 58:439.CrossRefGoogle Scholar
  107. Smith, J. W., Steiner, A. L., Newberry, W. M., Jr., and Parker, C. W., 1971, Cyclic adenosine 3′,5′-monophosphate in human lymphocytes: Alterations after phytohemagglutinin stimulation, J. Clin. Invest. 50:432.PubMedCrossRefGoogle Scholar
  108. Spiegel, S., and Wilchek, M., 1981, Membrane sialoglycolipids emerging as possible signal transducers for lymphocyte stimulation, J. Immunol. 127:572.PubMedGoogle Scholar
  109. Spiegel, S., Ravid, A., and Wilchek, M., 1979, Involvement of gangliosides in lymphocyte stimulation, Proc. Natl. Acad. Sci. USA 76:5277.PubMedCrossRefGoogle Scholar
  110. Stein, K. E., and Marcus, D. M., 1977, Glycosphingolipids of purified human lymphocytes, Biochemistry 16:5285.PubMedCrossRefGoogle Scholar
  111. Stein, K. E., Schwarting, G. A., and Marcus, D. M., 1978, Glycolipid markers of murine lymphocyte subpopulations, J. Immunol. 120:676.PubMedGoogle Scholar
  112. Taylor, J. E., and Smith, I. C. P., 1980, The fidelity of response by nitroxide spin probes to changes in membrane organization: The condensing effect of cholesterol, Biochim. Biophys. Acta 599:140.PubMedCrossRefGoogle Scholar
  113. Taylor, R. G., Duffus, W. P. H., Raff, M. C, and de Petris, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunog-lobulin antibody, Nature New Biol. 233:225.PubMedCrossRefGoogle Scholar
  114. Thulborn, K. A., Treloar, F. E., and Sawyer, W. H., 1978, A microviscosity barrier in the lipid bilayer due to the presence of phospholipids containing unsaturated acyl chains, Biochem. Biophys. Res. Commun. 81:42.PubMedCrossRefGoogle Scholar
  115. Tkaczuk, P., and Thornton, E. R., 1979, Carbon-13 nuclear magnetic resonance studies of cerebroside derivatives and their properties in lecithin bilayers (1), Biochem. Biophys. Res. Commun. 91:1415.PubMedCrossRefGoogle Scholar
  116. Toh, B. H., and Hard, G. C, 1977, Actin co-caps with concanavalin A receptors, Nature (London) 269:695.CrossRefGoogle Scholar
  117. Tonegawa, Y., and Hakomori, S.-L, 1977, “Ganglioprotein and globoprotein”: The glycoproteins reacting with anti-ganglioside and antigloboside antibodies and the ganglioprotein change associated with transformation, Biochem. Biophys. Res. Commun. 76:9.PubMedCrossRefGoogle Scholar
  118. Tosteson, M. T., and Tosteson, D. C, 1978, Bilayers containing gangliosides develop channels when exposed to cholera toxin, Nature (London) 275:142.CrossRefGoogle Scholar
  119. Toyoshima, S., and Osawa, T., 1975, Lectins from Wistaria floribunda seeds and their effect on membrane fluidity of human peripheral lymphocytes, J. Biol. Chem. 250:1655.PubMedGoogle Scholar
  120. Uhr, J. W., and Vitetta, E. S., 1973, Synthesis, biochemistry and dynamics of cell surface immunoglobulin on lymphocytes, Fed. Proc. 32:35.PubMedGoogle Scholar
  121. Unanue, E. R., Perkins, W. D., and Karnovsky, M. J., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultra-structural autoradiography, J. Exp. Med. 136:885.PubMedCrossRefGoogle Scholar
  122. Unanue, E. R., Karnovsky, M. J., and Engers, H. D., 1973, Ligand-induced movement of lymphocyte membrane macromolecules. III. Relationship between the formation and fate of anti Ig-surface Ig complexes and cell metabolism, J. Exp. Med. 137:675.PubMedCrossRefGoogle Scholar
  123. van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin, Nature (London) 249:415.CrossRefGoogle Scholar
  124. Warr, G. W., and Marchalonis, J. J., 1976, Glycoproteins of murine thymocyte and splenocyte surface membranes: Binding to concanavalin A and recognition by heterologous antilym-phocyte serum, Immunochemistry 13:753.PubMedCrossRefGoogle Scholar
  125. Wedner, H. J., and Parker, C. W., 1976, Lymphocyte activation, Prog. Allergy 20:195.PubMedCrossRefGoogle Scholar
  126. Wedner, H. J., Danker, R., and Parker, C. W., 1975, Cyclic GMP and lectin-induced lymphocyte activation, J. Immunol. 45:1682.Google Scholar
  127. Whisler, R. L., and Yates, A. J., 1980, Regulation of lymphocyte responsiveness by human gangliosides. I. Characteristics of inhibitory effects and the induction of impaired activation, J. Immunol. 125:2106.PubMedGoogle Scholar
  128. White, S. H., 1976, The lipid bilayer as a’ solvent’ for small hydrophobic molecules, Nature (London) 262:421.CrossRefGoogle Scholar
  129. Wynn, D., Wilchek, M., and Novogrodsky, A., 1976, A chemical approach for the localization of membrane sites involved in lymphocyte activation, Biochem. Biophys. Res. Commun. 68:730.CrossRefGoogle Scholar
  130. Yates, A. J., Mattison, S. L., and Whisler, R. L., 1980, Effect of concanavalin A on ganglioside metabolism of human lymphocytes, Biochem. Biophys. Res. Commun. 96:211.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. Curtain
    • 1
  1. 1.Division of Chemical and Wood TechnologyBiotechnology Section, CSIROClaytonAustralia

Personalised recommendations