Advertisement

Membrane Fluidity and Receptor Function

  • M. Shinitzky
Part of the Biomembranes book series (B, volume 12)

Abstract

Membrane processes can be grossly divided into those driven by metabolic energy (active processes) and those carried out through diffusion (passive processes). Most of the membranal active processes are associated with polymerization-depolymerization processes in networks of muscle-type proteins underlying the inner membrane surface. The passive processes are spontaneous and comply with the thermodynamics of diffusion where the membrane lipid fluidity is a critical determinant. In many of the passive processes, the rates are determined by the lipid fluidity, and modulation of the membrane fluidity is directly reflected in the overall product. Manipulation of membrane processes by in vitro or in vivo alteration of lipid composition and fluidity was termed passive modulation (Shinitzky, 1979).

Keywords

Receptor Function Membrane Fluidity Lateral Diffusion Rotational Diffusion Passive Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G. R., and Mazo, R. M., 1980, Models for boundary effects on molecular rotation in membranes, Biopolymers 19:1597.CrossRefGoogle Scholar
  2. Austin, R. H., Chan, S. S., and Jovin, T. M., 1979, Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy, Proc. Natl. Acad. Sci. USA 76:5650.PubMedCrossRefGoogle Scholar
  3. Avivi, A., Tramontano, D., Ambesi-Impiombato, L. S., and Schlessinger, J., 1981, Adenosine 3′,5′ monophosphate modulates thyrotropin receptor clustering and thyrotropin activity Science 214:1237.PubMedCrossRefGoogle Scholar
  4. Barenholz, Y., and Thompson, T. E., 1980, Sphingomyelin in bilayers and biological membranes, Biochim. Biophys. Acta 604:129.PubMedCrossRefGoogle Scholar
  5. Blumenthal, R., Klausner, R. D., and Weinstein, J. N., 1980, Voltage-dependent translocation of the asialoglycoprotein receptor across lipid membranes, Nature (London) 288:333.CrossRefGoogle Scholar
  6. Borochov, H., and Shinitzky, M., 1976, Vertical displacement of membrane proteins mediated by changes in microviscosity, Proc. Natl. Acad. Sci. USA 73:4526.PubMedCrossRefGoogle Scholar
  7. Carpantier, J. L., Gorden, P., Ambardt, M., Van Obberghen, E., Kahn, C. R., and Orci, L., 1978, 125I-inulin binding to cultured human lymphocytes: Initial localization and fate of hormone determined by quantitative electron microscopic autoradiography, J. Clin. Invest. 61:1057.CrossRefGoogle Scholar
  8. Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559:289.PubMedGoogle Scholar
  9. Cherry, R. J., Muller, U., Holenstein, C., and Heyn, M. P., 1980, Lateral segregation of proteins induced by cholesterol in bacteriorhodopsin-phospholipid vesicles, Biochim. Biophys. Acta 596:145.PubMedCrossRefGoogle Scholar
  10. Cogan, U., and Schachter, D., 1981, Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores, Biochemistry 20:6396.PubMedCrossRefGoogle Scholar
  11. Cooper, R. A., 1977, Abnormalities of cell membrane fluidity in the pathogenesis of disease, N. Engl.J. Med. 197:371.Google Scholar
  12. Cooper, R. A., 1978, Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells, J. Supramol. Struct. 8:413.PubMedCrossRefGoogle Scholar
  13. Corda, D., Pasternak, C, and Shinitzky, M., 1982, Increase in lipid microviscosity of unilamellar vesicles upon the creation of transmembrane potential, J. Membr. Biol. 65:235.PubMedCrossRefGoogle Scholar
  14. Elson, E. L., and Schlessinger, J., 1979, Long range motions on cell surfaces, in: The Neu-rosciences—Fourth Study Program (F. O. Schmidt and F. Worden, eds.), pp. 691–701, MIT Press, Cambridge, Mass.Google Scholar
  15. Galla, H. J., Hartmann, W., Theilen, U., and Sackmann, E., 1979, On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes, J. Membr. Biol. 48:215.PubMedCrossRefGoogle Scholar
  16. Gerson, D. F., 1982, Interfacial free energies of the positioning and aggregation of membrane proteins, Biophys. J. 37:145.PubMedCrossRefGoogle Scholar
  17. Goldman, R., and Katchalski, E., 1971, Kinetic behavior of a two-enzyme membrane carrying out a consecutive set of reactions, J. Theor. Biol. 32:243.PubMedCrossRefGoogle Scholar
  18. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles and receptor mediated endocytosis, Nature (London) 279:679.CrossRefGoogle Scholar
  19. Gorden, P., Carpantier, J., Cohen, S., and Orci, L., 1978, Epidermal growth factor: Morphological demonstration of binding internalization and lysosomal association in human fibro-blasts, Proc. Natl. Acad. Sci. USA 75:5025.PubMedCrossRefGoogle Scholar
  20. Hackenbrock, C. R., 1981, Lateral diffusion and electron transfer in the mitochondrial inner membrane, Trends Biochem. Sci. 6:151.CrossRefGoogle Scholar
  21. Haigler, H. T., McClanna, J. A., and Cohen, S., 1979, Direct visualization of the binding and internalization of a territin conjugate of epidermal growth factor in human carcinoma cells A-431,7. Cell Biol. 81:382.CrossRefGoogle Scholar
  22. Hanski, E., Rimon, G., and Levitzki, A., 1979, Adenylate cyclase activation by the β-adrenergic receptors as a diffusion-controlled process, Biochemistry 18:846.PubMedCrossRefGoogle Scholar
  23. Heron, D. S., Shinitzky, M., Hershkovitz, M., and Samuel, D., 1980, Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes, Proc. Natl. Acad. Sci. USA 77:7463.PubMedCrossRefGoogle Scholar
  24. Heron, D. S., Israeli, M., Hershkovitz, M., Samuel, D., and Shinitzky, M., 1981, Lipid-induced modulation of opiate receptors in mouse brain membranes, Eur. J. Pharmacol. 72:361.PubMedCrossRefGoogle Scholar
  25. Hershkovitz, M., Heron, D., Samuel, D., and Shinitzky, M., 1982, Modulation of protein phos-phorylation and receptor binding in brain membranes by changes in lipid microviscosity: Implications for aging, Prog. Brain Res. 56:419.CrossRefGoogle Scholar
  26. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082.PubMedCrossRefGoogle Scholar
  27. Houslay, M. D., Dipple, I., and Elliott, K. R. F., 1980, Guanosine 5′-triphosphate andguanosine 5′-[βα-imido] triphosphate effect a collisional coupling mechanism between glucagon receptor and catalytic unit of adenylate cyclase, Biochem. J. 186:649.PubMedGoogle Scholar
  28. Kleeman, W., and McConnell, H. M., 1976, Interactions of proteins and cholesterol with lipid bilayer membranes, Biochim. Biophys. Acta 419:206.CrossRefGoogle Scholar
  29. Levi, A., Shechter, Y., Neufeld, E. J., and Schlessinger, J., 1980, Mobility, clustering and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line, Proc. Natl. Acad. Sci. USA 77:3461.Google Scholar
  30. Luly, P., and Shinitzky, M., 1979, Gross structural changes in isolated liver cell plasma membranes upon binding of insulin, Biochemistry 18:445.PubMedCrossRefGoogle Scholar
  31. Luly, P., Crifo, C, and Strom, R., 1979, Effect of insulin on lateral diffusion of pyrene in rat liver plasma membrane, Experientia 35:1300.PubMedCrossRefGoogle Scholar
  32. Massa, E. M., Morezo, R. D., Bloj, B., and Farias, R. N., 1975, Hormone action and membrane fluidity: Effect of insulin and cortisol on the rate coefficient of rat erythrocyte membrane-bound acetylcholine esterase and Na-K-ATPase, Biochem. Biophys. Res. Commun. 66:115.PubMedCrossRefGoogle Scholar
  33. Montai, M., Darzon, A., and Trissl, H. W., 1977, Transmembrane channel formation in rho-dopsin-containing bilayer membranes, Nature (London) 267:221.CrossRefGoogle Scholar
  34. Moreno, H., and Farias, R. N., 1976, Insulin decreases bacterial membrane fluidity: Is it a general event in its action?, Biochem. Biophys. Res. Commun. 72:74.PubMedCrossRefGoogle Scholar
  35. Muller, C. P., and Shinitzky, M., 1981, Passive shedding of erythrocyte antigens induced by membrane rigidification, Exp. Cell Res. 136:52.CrossRefGoogle Scholar
  36. Puri, J., Shinitzky, M., and Lonai, P., 1980, Concomitant increase in antigen binding and in T-cell membrane lipid viscosity induced by the lymphocyte activating factor, LAF, J. Immunol. 124:1937.PubMedGoogle Scholar
  37. Richter, P. H., and Eigen, M., 1974, Diffusion-controlled reaction rates in spheroidal geometry: Application to receptor-operator association and membrane-bound enzymes, Biophys. Chem. 2:255.PubMedCrossRefGoogle Scholar
  38. Rimon, G., Hanski, E., Braun, S., and Levitzki, A., 1978, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature (London) 276:394.CrossRefGoogle Scholar
  39. Rosenberg, P. H., 1979, Effects of halothane, lidocaine and 5-hydroxytryptamine on fluidity of synaptic plasma membranes, myelin membranes and synaptic mitochondrial membranes, Arch. Pharmacol. 307:199.CrossRefGoogle Scholar
  40. Saffman, P. G., and Delbruck, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA 72:3111.PubMedCrossRefGoogle Scholar
  41. Schlessinger, J., 1980, The mechanism and role of hormone-induced clustering of membrane receptors, Trends Biochem. Sci. 5:210.CrossRefGoogle Scholar
  42. Schlessinger, J., Shechter, Y., Willingham, M. C, and Pastan, I., 1978, Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells, Proc. Natl. Acad. Sci. USA 75:2659.PubMedCrossRefGoogle Scholar
  43. Schneeweiss, F., Naquira, D., Rosenheck, K., and Schneider, A. S., 1979, Cholinergic stimulants and excess potassium ion increase the fluidity of plasma membranes isolated from adrenal chromaffin cells, Biochim. Biophys. Acta 555:460.PubMedCrossRefGoogle Scholar
  44. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.PubMedCrossRefGoogle Scholar
  45. Segal, D. M., Taurog, J. T., and Metzger, H., 1977, Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation, Proc. Natl. Acad. Sci. USA 74:2993.PubMedCrossRefGoogle Scholar
  46. Shih, J. C, and Young, H., 1978, The alteration of serotonin binding sites in aged human brain, Life Sci. 23:1441.PubMedCrossRefGoogle Scholar
  47. Shinitzky, M., 1979, The concept of passive modulation of membrane responses, Dev. Cell Biol. 4:173.Google Scholar
  48. Shinitzky, M., 1984, Membrane fluidity and cellular functions, in: Physiology of Membrane Fluidity, (M. Shinitzky, ed.), CRC Press, in press.Google Scholar
  49. Shinitzky, M., and Henkart, P., 1979, Fluidity of cell membranes: Current concepts and trends, Int. Rev. Cytol. 60:121.PubMedCrossRefGoogle Scholar
  50. Shinitzky, M., and Yuli, I., 1982, Lipid fluidity at the submacroscopic level: Determination by fluorescence polarization, Chem. Phys. Lipids 30:261.CrossRefGoogle Scholar
  51. Shinitzky, M., Skornick, Y., and Haran-Ghera, N., 1979, Effective tumor immunization induced by cells of elevated membrane microviscosity, Proc. Natl. Acad. Sci. USA 76:5313.PubMedCrossRefGoogle Scholar
  52. Tolkovsky, A. M., and Levitzki, A., 1978, Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes, Biochemistry 17:3795.PubMedCrossRefGoogle Scholar
  53. Weber, G., 1972, Ligand binding and internal equilibria in proteins, Biochemistry 11:865.CrossRefGoogle Scholar
  54. Weinstein, J. N., Blumenthal, R., Van Renswoude, J., van Kempfe, C, and Klausner, R. D., 1982, Charge clusters and the orientation of membrane proteins, J. Membr. Biol. 66:203.PubMedCrossRefGoogle Scholar
  55. Wunderlich, F., Ronai, V., Speth, J., Seelig, J., and Blumen, A., 1975, Thermotropic lipid clustering in Tetrahymena membranes, Biochemistry 14:3730.PubMedCrossRefGoogle Scholar
  56. Yuli, I., Wilbrandt, W., and Shinitzky, M., 1981, Glucose transport through cell membranes of modified lipid fluidity, Biochemistry 20:4250.PubMedCrossRefGoogle Scholar
  57. Yuli, I., Incerpi, S., Luly, P., and Shinitzky, M., 1982, Insulin stimulation of glucose and amino acid transport in mouse fibroblasts of elevated membrane micro viscosity, Experientia 38:114.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. Shinitzky
    • 1
  1. 1.Department of Membrane ResearchThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations