Thermal Analysis of Membranes

  • K. M. W. Keough
  • P. J. Davis
Part of the Biomembranes book series (B, volume 12)


The techniques of thermal analysis have been major tools in the elucidation of the thermotropism of model and biological membranes. These techniques provide information directly on the flow of energy into or out of the systems under study, and indirectly on the molecular interactions in these systems. The two processes which have been used extensively in the examination of membranes are differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Values of temperature and heat change are measured in the absence of reporter groups or probe molecules, and so they are direct measures of those properties of the system under study. The techniques of DTA and DSC provide information about changes in state, or thermodynamic information. When used in conjunction with other physical and biochemical measures of membrane structure and function, this thermodynamic information can be related to kinetic properties such as the fluidity of membranes. This chapter will emphasize the role of thermal analysis in the elucidation of structural-functional relationships in membranes. Some questions which arise as a result of the application of the techniques in various systems will be examined. This review chapter is not intended to provide a complete compendium of the application of these techniques to membranes, although most major applications will be discussed.


Double Bond Liquid Crystal Head Group Model Membrane Positional Isomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, M. B., 1970, Studies of thermal transitions of phospholipids in water: Effect of chain length and polar groups of single lipids and mixtures. Adv. Exp. Med. Biol. 7:37.Google Scholar
  2. Ahmed, M., Burton, J. S., Hadgraft, J., and Kellaway, I. W., 1981, Thermodynamics of partitioning and efflux of phenothiazines from liposomes, J. Membr. Biol. 58:181.PubMedCrossRefGoogle Scholar
  3. Albon, N., and Sturtevant, J. M., 1978, Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines, Proc. Natl. Acad. Sci. U.S.A. 75:2258.PubMedCrossRefGoogle Scholar
  4. Bach, D., Bursuker, I., and Miller, I. R., 1978, Differential scanning calorimetry of rat liver mitochondria, Experientia 34:717.PubMedCrossRefGoogle Scholar
  5. Barenholz, Y., Suurkuusk, J., Mountcastle, D., Thompson, T. E., and Biltonen, R. L., 1976, A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins, Biochemistry 15:2441.PubMedCrossRefGoogle Scholar
  6. Barton, P. G., and Gunstone, F. D., 1975, Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins: Synthesis and properties of sixteen positional isomers of l,2-dioctadecenoyl-sn-glycero-3-phosphocholine, J. Biol. Chem. 250:4470.PubMedGoogle Scholar
  7. Berde, C. B., Andersen, H. C, and Hudson, B. S., 1980, A theory of the effects of head-group structure and chain unsaturation on the chain melting transition of phospholipid dispersions, Biochemistry 19:4279.PubMedCrossRefGoogle Scholar
  8. Bertoli, E., Chapman, D., Griffiths, D. E., and Strach, S. J., 1974, Organization of yeast mitochondrial membranes: Fluidity and phase transition studied by calorimetry and spin-label methods, Biochem. Soc. Trans. 2:964.Google Scholar
  9. Black, S. G., and Dixon, G. S., 1981, AC calorimetry of dimyristoylphosphatidylcholine multilayers: Hysteresis and annealing near the gel to liquid-crystal transition, Biochemistry 20:6740.PubMedCrossRefGoogle Scholar
  10. Blaker, W. D., and Moscatelli, E. A., 1979, The effect of hibernation on the positional distribution of ethanolamineglycerophospholipid fatty acids in hamster brain membranes, Lipids 14:1027.PubMedCrossRefGoogle Scholar
  11. Blazyk, J. F., and Newman, J. L., 1980, Calorimetric studies of lipid phase transitions in native and heat-denatured membranes of beef heart submitochondrial particles, Biochim. Biophys. Acta 600:1007.PubMedCrossRefGoogle Scholar
  12. Blazyk, J. F., and Steim, J. M., 1972, Phase transitions in mammalian membranes, Biochim. Biophys. Acta 266:737.PubMedCrossRefGoogle Scholar
  13. Blume, A., 1980, Thermotropic behavior of phosphatidylethanolamine-cholesterol and phos-phatidylethanolamine-phosphatidylcholine-cholesterol mixtures, Biochemistry 21:4908.CrossRefGoogle Scholar
  14. Blume, A., and Ackermann, T., 1974, A calorimetric study of the lipid phase transitions in aqueous dispersions of phosphorylcholine-phosphorylethanolamine mixtures, FEBS Lett. 43:71.PubMedCrossRefGoogle Scholar
  15. Blume, A., and Eibl, H., 1979, The influence of charge on bilayer membranes: Calorimetric investigation of phosphatidic acid bilayers, Biochim. Biophys. Acta 558:13.PubMedCrossRefGoogle Scholar
  16. Blume, A., and Eibl, H., 1981, A calorimetric study of the thermotropic behaviour of 1,2-dipentadecylmethylidene phospholipids, Biochim. Biophys. Acta 640:609.PubMedCrossRefGoogle Scholar
  17. Boggs, J. M., 1980, Intermolecular hydrogen bonding between lipids: Influence on organization and function of lipids in membranes, Can. J. Biochem. 58:755.PubMedGoogle Scholar
  18. Boggs, J. M., and Moscarello, M. A., 1978, Dependence of boundary lipid on fatty acid chain length in phosphatidylcholine vesicles containing a hydrophobic protein from myelin proteolipid, Biochemistry 17:5734.PubMedCrossRefGoogle Scholar
  19. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1977a, Phase separation of acidic and neutral phospholipids induced by human myelin basic protein, Biochemistry 16:5420.PubMedCrossRefGoogle Scholar
  20. Boggs, J. M., Wood, D. D., Moscarello, M. A., and Papahadjopoulos, D., 1977b, Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles, Biochemistry 16:2325.PubMedCrossRefGoogle Scholar
  21. Boggs, J. M., Clement, I. R., and Moscarello, M. A., 1980, Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition, Biochim. Biophys. Acta 601:134.PubMedCrossRefGoogle Scholar
  22. Brandts, J. F., Erickson, L., Lysko, K., Schwartz, A. T., and Taverna, R. D., 1977, Calorimetric studies of the structural transitions of the human erythrocyte membrane; The involvement of spectrin in the A transition, Biochemistry 16:3450.PubMedCrossRefGoogle Scholar
  23. Brandts, J. F., Taverna, R. D., Sadasivan, E., and Lysko, K. A., 1978, Calorimetric studies of the structural transitions of the human erythrocyte membrane: Studies of the B and C transitions, Biochim. Biophys. Acta 512:566.PubMedCrossRefGoogle Scholar
  24. Bunow, M. R., 1979, Two gel states of cerebrosides: Calorimetric and Raman spectroscopic evidence, Biochim. Biophys. Acta 574:542.PubMedGoogle Scholar
  25. Bunow, M. R., and Bunow, B., 1979, Phase behavior of ganglioside-lecithin mixtures: Relation to dispersion of gangliosides in membranes, Biophys. J. 27:325.PubMedCrossRefGoogle Scholar
  26. Caffrey, M., and Feigenson, G. W., 1981, Fluorescent quenching in model membranes: Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics, Biochemistry 20:1949.PubMedCrossRefGoogle Scholar
  27. Calhoun, W. I., and Shipley, G. G., 1979, Sphingomyelin-lecithin bilayers and their interaction with cholesterol, Biochemistry 18:1717.PubMedCrossRefGoogle Scholar
  28. Cater, B. R., Chapman, D., Hawes, S. M., and Saville, J., 1974, Lipid phase transitions and drug interactions, Biochim. Biophys. Acta 363:54.PubMedCrossRefGoogle Scholar
  29. Chapman, D., 1975a, Fluidity and phase transitions of cell membranes, in: Biomembranes, Vol. 7 (H. Eisenberg, E. Katchalski-Katzir, and L. A. Manson, eds.), pp. 1–9, Plenum Press, New York.Google Scholar
  30. Chapman, D., 1975b, Phase transitions and fluidity characteristics of lipids and cell membranes, Q. Rev. Biophys. 8:185.PubMedCrossRefGoogle Scholar
  31. Chapman, D., and Urbina, J., 1971, Phase transitions and bilayer structure of Mycopiasma laidlawii B, FEBS Lett. 12:169.PubMedCrossRefGoogle Scholar
  32. Chapman, D., Byrne, P., and Shipley, G. G., 1966, The physical properties of phospholipids. I. Solid state and mesomorphic properties of some 2,3-diacyl-DL-phosphatidylethanolam-ines, Proc. R. Soc. London Ser. A 290:115.CrossRefGoogle Scholar
  33. Chapman, D., Williams, R. M., and Ladbrooke, B. D., 1967, Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins), Chem. Phys. Lipids 1:445.CrossRefGoogle Scholar
  34. Chapman, D., Urbina, J., and Keough, K. M., 1974, Biomembrane phase transitions: Studies of lipid-water systems using differential scanning calorimetry, J. Biol. Chem. 249:2512.PubMedGoogle Scholar
  35. Chapman, D., Cornell, B. A., Eliasz, A. W., and Perry, A., 1977, Interactions of helical po-lypeptide segments which span the hydrocarbon region of lipid bilayers: Studies of the gramicidin A lipid-water system, J. Mol. Biol. 113:517.PubMedCrossRefGoogle Scholar
  36. Chen, J. S., Barton, P. G., Brown, D., and Kates, M., 1974, Osmometric and microscopic studies on bilayers of polar lipids from the extreme halophile, Halobacterium cutirubrum, Biochim. Biophys. Acta 352:202.PubMedCrossRefGoogle Scholar
  37. Chen, S. C, and Sturtevant, J. M., 1981, Thermotropic behavior of bilayers formed from mixed-chain phosphatidylcholines, Biochemistry 20:713.PubMedCrossRefGoogle Scholar
  38. Cheng, W. H., 1980, A theoretical description of phase diagrams for nonideal lipid mixtures, Biochim. Biophys. Acta 600:358.PubMedCrossRefGoogle Scholar
  39. Coolbear, K. P., and Keough, K. M. W., 1983, Lipid oxidation and gel to liquid-crystalline transition temperatures of synthetic polyunsaturated mixed-acid phosphatidylcholines, Biochim. Biophys. Acta 732:531-540.PubMedCrossRefGoogle Scholar
  40. Coolbear, K. P., Berde, C. B., and Keough, K. M. W., 1983, Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines, Biochemistry 22:1466-1473.PubMedCrossRefGoogle Scholar
  41. Correa-Freire, M. C., Freire, E., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1979, Thermotropic behavior of monoglucocerebroside-dipalmitoylphosphatidylcholine multi-lamellar liposomes, Biochemistry 18:442.PubMedCrossRefGoogle Scholar
  42. Cullis, P. R., and de Kruijff, B., 1979, Lipid polymorphism and the functional role of lipids in biological membranes, Biochim. Biophys. Acta 559:399.PubMedGoogle Scholar
  43. Davis, J. H., 1979, Deuterium magnetic resonance study of the gel and liquid crystalline phase of dipalmitoyl phosphatidylcholine, Biophys. J. 27:339.PubMedCrossRefGoogle Scholar
  44. Davis, P. J., and Keough, K. M. W., 1983, Differential scanning calorimetric studies of aqueous dispersions of mixtures of cholesterol with some single-acid and mixed-acid phosphatidylcholines, Biochemistry 22:6331.Google Scholar
  45. Davis, P. J., Coolbear, K. P., and Keough, K. M. W., 1980, Differential scanning calorimetric studies of the thermotropic phase behaviour of membranes composed of dipalmitoyllecithin and mixed-acid unsaturated lecithins, Can. J. Biochem. 58:851.PubMedCrossRefGoogle Scholar
  46. Davis, P. J., Fleming, B. D., Coolbear, K. P., and Keough, K. M. W., 1981, Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines, Biochemistry 20:3633.PubMedCrossRefGoogle Scholar
  47. de Kruyff, B., Demel, R. A., and van Deenen, L. L. M., 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes, Biochim. Biophys. Acta 255:331.PubMedCrossRefGoogle Scholar
  48. de Kruyff, B., Demel, R. A., Slotboom, A. J., van Deenen, L. L. M., and Rosenthal, A. F., 1973, The effect of the polar headgroup on the lipid-cholesterol interaction: A monolayer and differential scanning calorimetry study, Biochim. Biophys. Acta 307:1.PubMedCrossRefGoogle Scholar
  49. de Kruyff, B., van Dijck, P. W. M., Demel, R. A., Schuijff, A., Brandts, F., and van Deenen, L. L. M., 1974, Non-random distribution of cholesterol in phosphatidylcholine bilayers, Biochim. Biophys. Acta 356:1.PubMedCrossRefGoogle Scholar
  50. Demel, R. A., Jansen, J. W. C. M., van Dijck, P. W. M., and van Deenen, L. L. M., 1977, The preferential interaction of cholesterol with different classes of phospholipids, Biochim. Biophys. Acta 465:1.PubMedCrossRefGoogle Scholar
  51. Driedzic, W., Selivonchick, D. P., and Roots, B. I., 1976, Alk-l-enyl ether-containing lipids of goldfish (Carassius auratus L.) brain and temperature acclimation, Comp. Biochem. Physiol. B 53:311.PubMedCrossRefGoogle Scholar
  52. Dyatlovitskaya, E. V., Yanchevskaya, G. V., and Bergelson, L. D., 1974, Molecular species and membrane forming properties of lecithins in normal liver and hepatoma, Chem. Phys. Lipids 12:132.PubMedCrossRefGoogle Scholar
  53. Eibl, H., and Woolley, P., 1979, Electrostatic interactions at charged lipid membranes: Hydrogen bonds in lipid membrane surfaces, Biophys. Chem. 10:261.PubMedCrossRefGoogle Scholar
  54. Eliasz, A. W., Chapman, D., and Ewing, D. F., 1976, Phospholipid phase transitions: Effects of n-alcohols, n-monocarboxylic acids, phenylalkyl alcohols and quaternary ammonium compounds, Biochim. Biophys. Acta 448:220.PubMedCrossRefGoogle Scholar
  55. Epand, R. M., and Sturtevant, J. M., 1981, A calorimetric study of peptide-phospholipid interactions: The glucagon-dimyristoylphosphatidylcholine complex, Biochemistry 20:4603.PubMedCrossRefGoogle Scholar
  56. Estep, T. N., Mountcastle, D. B., Biltonen, R. L., and Thompson, T. E., 1978, Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidycho-line-cholesterol mixtures, Biochemistry 17:1984.PubMedCrossRefGoogle Scholar
  57. Estep, T. N., Mountcastle, D. B., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1979, Thermal behavior of synthetic sphingomyelin-cholesterol dispersions, Biochemistry 18:2112.PubMedCrossRefGoogle Scholar
  58. Findlay, E. J., and Barton, P. G., 1978, Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions, Biochemistry 17:2400.PubMedCrossRefGoogle Scholar
  59. Fraenkel, G., and Hopf, H. S., 1940, The physiological action of abnormally high temperatures on poikilothermic animals. 1. Temperature adaptation and the degree of saturation of the phosphatides, Biochem. J. 34:1085.PubMedGoogle Scholar
  60. Freire, E., and Snyder, B., 1980, Estimation of the lateral distribution of molecules in two-component lipid bilayers, Biochemistry 19:88.PubMedCrossRefGoogle Scholar
  61. Frenzel, J., Arnold, K., and Nuhn, P., 1978, Calorimetric, 13C nmr, and 31P nmr studies of the interaction of some phenothiazine derivatives with dipalmitoylphosphatidylcholine model membranes, Biochim. Biophys. Acta 507:185.PubMedCrossRefGoogle Scholar
  62. Friedman, K. J., 1977, Role of lipids in the Neurospora crassa membrane. I. Influence of fatty acid composition on membrane phase transitions, J. Membr. Biol. 32:33.PubMedCrossRefGoogle Scholar
  63. Friedman, K. J., and Glick, D., 1980, Role of lipids in the Neurospora crassa membrane. III. Lipid composition and phase transition properties of the plasma membrane, and its components, J. Membr. Biol. 54:183.PubMedCrossRefGoogle Scholar
  64. Friedman, K. J., and Glick, D., 1982, Role of lipids in the Neurospora crassa membrane. IV. Biochemical and electrophysiological changes caused by growth on phytanic acid, J. Membr. Biol. 64:1.PubMedCrossRefGoogle Scholar
  65. Frischleder, H., and Gleichmann, S., 1977, Investigation of the influence of alkyl ammonium iodides on the thermotropic phase transition of dipalmitoyl lecithin lamellar systems using differential scanning calorimetry, Stud. Biophys. 64:95.Google Scholar
  66. Gershfeld, N. L., 1978, Equilibrium studies of lecithin-cholesterol interactions. I. Stoichiometry of lecithin-cholesterol complexes in bulk systems, Biophys. J. 22:469.PubMedCrossRefGoogle Scholar
  67. Góméz-Fernández, J. C., Goni, F. M., Bach, D., Restall, C, and Chapman, D., 1979, Protein-lipid interaction: A study of (Ca2+-Mg2+) ATPase reconstituted with synthetic phospho-lipids, FEBS Lett. 98:224.PubMedCrossRefGoogle Scholar
  68. Góméz-Fernández, J. C., Goni, F. M., Bach, D., Restall, C. J., and Chapman, D., 1980, Protein-lipid interactions: Biophysical studies of (Ca2+ + Mg2+)-ATPase reconstituted systems, Biochim. Biophys. Acta 598:502.PubMedCrossRefGoogle Scholar
  69. Hackenbrock, C. R., Höchli, M., and Chau, R. M., 1976, Calorimetric and freeze-fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes, Biochim. Biophys. Acta 455:466.PubMedCrossRefGoogle Scholar
  70. Harlos, K., and Eibl, H., 1980, Influence of calcium on phosphatidylethanolamine: An investigation of the structure at high pH, Biochim. Biophys. Acta 601:113.PubMedCrossRefGoogle Scholar
  71. Häuser, H., and Phillips, M. C, 1979, Interactions of the polar groups of phospholipid bilayer membranes, Prog. Surf. Membr. Sci. 13:297.Google Scholar
  72. Herring, F. G., and Weeks, G., 1979, Analysis of Dictyostelium discoideum plasma membrane fluidity by electron spin resonance, Biochim. Biophys. Acta 552:66.PubMedCrossRefGoogle Scholar
  73. Herring, F. G., Tatischeff, I., and Weeks, G., 1980, The fluidity of plasma membranes of Dictyostelium discoideum: The effects of polyunsaturated fatty acid incorporation assessed by fluorescence depolarization and electron paramagnetic resonance, Biochim. Biophys. Acta 602:1.PubMedCrossRefGoogle Scholar
  74. Hildebrand, J. H., and Lamoreaux, R. H., 1972, Fluidity: A general theory, Proc. Natl. Acad. Sci. USA 69:3428.PubMedCrossRefGoogle Scholar
  75. Hinz, H.-J., and Sturtevant, J. M., 1972, Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-α-lecithins, J. Biol. Chem. 247:6071.PubMedGoogle Scholar
  76. Hinz, H.-J., Körner, O., and Nicolau, C, 1981, Influence of gangliosides GMl and GDla on structural and thermotropic properties of sonicated small 1,2-dipalmitoyl-l-α-phosphati-dylcholine vesicles, Biochim. Biophys. Acta 643:557.PubMedCrossRefGoogle Scholar
  77. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082.PubMedCrossRefGoogle Scholar
  78. Holub, B. J., and Lands, W. E. M., 1975, Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply, Can. J. Biochem. 53:1262.PubMedCrossRefGoogle Scholar
  79. Jackson, M. B., and Sturtevant, J. M., 1977, Studies of the lipid phase transitions of Escherichia coli by high sensitivity differential scanning calorimetry, J. Biol. Chem. 252:4749.PubMedGoogle Scholar
  80. Jackson, W. M., and Brandts, J. F., 1970, Thermodynamics of protein denaturation: A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation, Biochemistry 9:2294.PubMedCrossRefGoogle Scholar
  81. Jackson, W. M., Kostyla, J., Nordin, J. H., and Brandts, J. F., 1973, Calorimetric study of protein transitions in human erythrocyte ghosts, Biochemistry 12:3662.PubMedCrossRefGoogle Scholar
  82. Jacobs, R. E., Hudson, B. S., and Andersen, H. C, 1977, A theory of phase transitions and phase diagrams for one-and two-component phospholipid bilayers, Biochemistry 16:4349.PubMedCrossRefGoogle Scholar
  83. Jain, M. K., and Wu, N. M., 1978, Phenothiazines: Equal concentrations in lipid bilayers do not induce equal response, Biochem. Biophys. Res. Commun. 81:1412.PubMedCrossRefGoogle Scholar
  84. Jain, M. K., Wu, N. Y.-M., and Wray, L. V., 1975, Drug-induced phase changes in bilayer as possible mode of action of membrane expanding drugs, Nature (London) 255:494.CrossRefGoogle Scholar
  85. Jain, M. K., Wu, N. Y.-M., Morgan, T. K., Briggs, M. S., and Murray, R. K., Jr., 1976, Phase transitions in a lipid bilayer. II. Influence of adamantine derivatives, Chem. Phys. Lipids 17:71.PubMedCrossRefGoogle Scholar
  86. Jain, M. K., Gleeson, J., Upreti, A., and Upreti, G. C, 1978, Intrinsic perturbing ability of alkanols in lipid bilayers, Biochim. Biophys. Acta 509:1.PubMedCrossRefGoogle Scholar
  87. Keough, K. M. W., and Davis, P. J., 1979, Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines, Biochemistry 18:1453.PubMedCrossRefGoogle Scholar
  88. Krishnan, K. S., and Brandts, J. F., 1979, Interaction of phenothiazines and lower aliphatic alcohols with erythrocyte membranes: A calorimetric study, Mol. Pharmacol. 16:181.PubMedGoogle Scholar
  89. Ladbrooke, B. D., and Chapman, D., 1969, Thermal analysis of lipids, proteins, and biological membranes: A review and summary of some recent studies, Chem. Phys. Lipids 3:304.PubMedCrossRefGoogle Scholar
  90. Ladbrooke, B. D., Williams, R. M., and Chapman, D., 1968a, Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction, Biochim. Biophys. Acta 150:333. Ladbrooke, B. D., Jenkinson, T. J., Kamat, V. B., and Chapman, D., 1968b, Physical studies of myelin. I. Thermal analysis, Biochim. Biophys. Acta 164:101.PubMedCrossRefGoogle Scholar
  91. Lee, A. G., 1977, Lipid phase transitions and phase diagrams. II. Mixtures involving lipids, Biochim. Biophys. Acta 472:285.PubMedGoogle Scholar
  92. Lee, A. G., 1978, Calculations of phase diagrams for non-ideal mixtures of lipids and a possible non-random distribution of lipids in lipid mixtures in the liquid crystalline phase, Biochim. Biophys. Acta 507:433.CrossRefGoogle Scholar
  93. Lee, T.-C, and Fitzgerald, V., 1980, Phase transitions of alkyl ether analogs of phosphatidyl-choline, Biochim. Biophys. Acta 598:189.PubMedCrossRefGoogle Scholar
  94. Liao, M. J., and Prestegard, J. H., 1981, Structural properties of a Ca2+ phosphatidic acid complex: Small angle X-ray scattering and calorimetric results, Biochim. Biophys. Acta 645:149.PubMedCrossRefGoogle Scholar
  95. Lindsey, H., Petersen, N. O., and Chan, S. I., 1979, Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems, Biochim. Biophys. Ada 555:147.CrossRefGoogle Scholar
  96. Lundberg, B., Svens, E., and Ekman, S., 1978, The hydration of phospholipids and phospho-lipid-cholesterol complexes, Chem. Phys. Lipids 22:285.PubMedCrossRefGoogle Scholar
  97. Mabrey, S., and Sturtevant, J. M., 1976, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry, Proc. Natl. Acad. Sci. USA 73:3862.PubMedCrossRefGoogle Scholar
  98. Mabrey, S., and Sturtevant, J. M., 1978, High-sensitivity differential scanning calorimetry in the study of biomembranes and related model systems, in: Methods in Membrane Biology, Vol. 9 (E. D. Korn, ed.), pp. 237–274, Plenum Press, New York.CrossRefGoogle Scholar
  99. Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl-and dipalmitoylphosphatidylcholines, Biochemistry 17:2464.PubMedCrossRefGoogle Scholar
  100. Madden, T. D., Vigo, C., Bruckdorfer, K. R., and Chapman, D., 1980, The incorporation of cholesterol into inner mitochondrial membranes and its effect on lipid phase transition, Biochim. Biophys. Acta 599:528.PubMedCrossRefGoogle Scholar
  101. Marcelja, S., 1976, Lipid-mediated protein interaction in membranes, Biochim. Biophys. Acta 455:1.PubMedCrossRefGoogle Scholar
  102. Mason, J. T., Huang, C, and Biltonen, R. L., 1981, Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions, Biochemistry 20:6086.PubMedCrossRefGoogle Scholar
  103. Mason, W. T., and Abrahamson, E. W., 1974, Phase transitions in vertebrate and invertebrate photoreceptor membranes, J. Membr. Biol. 15:383.PubMedCrossRefGoogle Scholar
  104. Mason, W. T., Fager, R. S., and Abrahamson, E. W., 1973a, Lipid and fatty acid composition of frog photoreceptor outer segments, Biochemistry 12:2147.PubMedCrossRefGoogle Scholar
  105. Mason, W. T., Fager, R. S., and Abrahamson, E. W., 1973b, Characterization of the lipid composition of squid rhabdome outer segments, Biochim. Biophys. Acta 306:67.PubMedGoogle Scholar
  106. Matheson, D. F., Oei, R., and Roots, B. I., 1980, Changes in the fatty acyl composition of phospholipids in the optic tectum and optic nerve of temperature-acclimated goldfish, Physiol. Zool. 53:57.Google Scholar
  107. McElhaney, R. N., 1974, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.PubMedCrossRefGoogle Scholar
  108. McIntosh, T. J., Simon, S. A., and MacDonald, R. C, 1980, The organization of n-alkanes in lipid bilayers, Biochim. Biophys. Acta 597:445.PubMedCrossRefGoogle Scholar
  109. Melchior, D. L., and Steim, J. M., 1976, Thermotropic transitions in biomembranes, Annu. Rev. Biophys. Bioeng. 5:205.PubMedCrossRefGoogle Scholar
  110. Melchior, D. L., and Steim, J. M., 1979, Lipid-associated thermal events in biomembranes, in: Progress in Surface and Membrane Science, Vol. 13 (D. A. Cadenhead and J. F. Danielli, eds.), pp. 211–295, Academic Press, New York.Google Scholar
  111. Melchior, D. L., Scavitto, F. J., Walsh, M. T., and Steim, J. M., 1977, Thermal techniques in biomembrane and lipoprotein research, Thermochim. Acta 18:43.CrossRefGoogle Scholar
  112. Mountcastle, D. B., Biltonen, R. L., and Halsey, M. J., 1978, Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes, Proc. Natl. Acad. Sci. USA 75:4906.PubMedCrossRefGoogle Scholar
  113. Oldfield, E., and Chapman, D., 1972, Molecular dynamics of cerebroside-cholesterol and sphin-gomyelin-cholesterol interactions: Implication for myelin membrane structure, FEBS Lett. 21:303.PubMedCrossRefGoogle Scholar
  114. Papahadjopoulos, D., 1977, Effects of bivalent cations and proteins on thermotropic properties of phospholipid membranes: Implications for the molecular mechanism of fusion and endocytosis, J. Colloid Interface Sci. 58:459.CrossRefGoogle Scholar
  115. Papahadjopoulos, D., Jacobson, K., Poste, G., and Shepherd, G., 1975a, Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers, Biochim. Biophys. Acta 394:504.PubMedCrossRefGoogle Scholar
  116. Papahadjopoulos, D., Moscarello, M., Eylar, E. H., and Isac, T., 1975b, Effects of proteins on thermotropic phase transitions of phospholipid membranes, Biochim. Biophys. Acta 401:317.PubMedCrossRefGoogle Scholar
  117. Phillips, M. C., Williams, R. M., and Chapman, D., 1969, On the nature of hydrocarbon chain motions in lipid liquid crystals, Chem. Phys. Lipids 3:234.CrossRefGoogle Scholar
  118. Phillips, M. C., Ladbrooke, B. D., and Chapman, D., 1970, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta 196:35.PubMedCrossRefGoogle Scholar
  119. Phillips, M. C., Hauser, H., and Paltauf, F., 1972, The inter-and intramolecular mixing of hydrocarbon chains in lecithin/water systems, Chem. Phys. Lipids 8:127.PubMedCrossRefGoogle Scholar
  120. Pink, D. A., and Chapman, D., 1979, Protein-lipid interactions in bilayer membranes: A lattice model, Proc. Natl. Acad. Sci. USA 76:1542.PubMedCrossRefGoogle Scholar
  121. Privalov, P. L., Plotnikov, V. V., and Filimonov, V. V., 1975, Precision scanning microca-lorimeter for the study of lipids, J. Chem. Thermodyn. 7:41.CrossRefGoogle Scholar
  122. Rainier, S., Jain, M. K., Ramirez, F., Ioannou, P. V., Marecek, J. F., and Wagner, R., 1979, Phase transition characteristics of diphosphatidylglycerol (cardiolipin) and stereoisomeric phosphatidyldiacylglycerol bilayers: Mono-and divalent metal ion effects, Biochim. Biophys. Acta 558:187.PubMedCrossRefGoogle Scholar
  123. Roots, B. I., and Johnston, P. V., 1968, Plasmalogens of the nervous system and environmental temperature, Comp. Biochem. Physiol. 26:553.PubMedCrossRefGoogle Scholar
  124. Rottem, S., and Markowitz, O., 1979a, Membrane lipids of Mycoplasma gallisepticum: A disaturated phosphatidylcholine and a phosphatidylglycerol with an unusual positional distribution of fatty acids, Biochemistry 18:2930.PubMedCrossRefGoogle Scholar
  125. Rottem, S., and Markowitz, O., 1979b, Unusual positional distribution of fatty acids in phos-phatidylglycerol of sterol-requiring mycoplasmas, FEBS Lett. 107:379.PubMedCrossRefGoogle Scholar
  126. Ruocco, M. J., Atkinson, D., Small, D. M., Skarjune, R. P., Oldfield, E., and Shipley, G. G., 1981, X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoyl-galactosylsphingosine (cerebroside), Biochemistry 20:5957.PubMedCrossRefGoogle Scholar
  127. Sacré, M.-M., Hoffmann, W., Turner, M., Tocanne, J.-F., and Chapman, D., 1979, Differential scanning calorimetric studies of some phosphatidylglycerol lipid-water systems, Chem. Phys. Lipids 25:69.CrossRefGoogle Scholar
  128. Scheidler, P. J., and Steim, J. M., 1975, Differential scanning calorimetry of biological membranes, in: Methods in Membrane Biology (E. D. Korn, ed.), Vol. 4, pp. 77–96, Plenum Press, New York.Google Scholar
  129. Schullery, S. E., Seder, T. A., Weinstein, D. A., and Bryant, D. A., 1981, Differential thermal analysis of dipalmitoylphosphatidylcholine-fatty acid mixtures, Biochemistry 20:6818.PubMedCrossRefGoogle Scholar
  130. Scott, H. L., and Cheng, W.-H., 1979, A theoretical model for lipid mixtures, phase transitions, and phase diagrams, Biophys. J. 28:117.PubMedCrossRefGoogle Scholar
  131. Seelig, J., and Browning, J. L., 1978, General features of phospholipid conformation in membranes, FEBS Lett. 92:41.CrossRefGoogle Scholar
  132. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.PubMedCrossRefGoogle Scholar
  133. Seelig, J., and Waespe-Šarčevic, N., 1978, Molecular order in cis and trans unsaturated phospholipid bilayers, Biochemistry 17:3310.PubMedCrossRefGoogle Scholar
  134. Sillerud, L. O., Schafer, D. E., Yu, R. K., and Konigsberg, W. H., 1979, Calorimetric properties of mixtures of ganglioside GM1 and dipalmitoylphosphatidylcholine, J. Biol. Chem. 254:10876.PubMedGoogle Scholar
  135. Silvius, J. R., and McElhaney, R. N., 1978a, Growth and membrane lipid properties of Acholeplasma laidlawii B lacking fatty acid heterogeneity, Nature (London) 272:645.CrossRefGoogle Scholar
  136. Silvius, J. R., and McElhaney, R. N., 1978b, Lipid compositional manipulation in Acholeplasma laidlawii B: Effect of exogeneous fatty acids on fatty acid composition and cell growth when endogenous fatty acid production is inhibited, Can. J. Biochem. 56:462.PubMedCrossRefGoogle Scholar
  137. Silvius, J. R., and McElhaney, R. N., 1979a, Effects of phospholipid acyl chain structure on physical properties. I. Isobranched phosphatidylcholines, Chem. Phys. Lipids 24:287.CrossRefGoogle Scholar
  138. Silvius, J. R., and McElhaney, R. N., 1979b, Effects of phospholipid acyl chain structure on thermotropic phase properties. 2. Phosphatidylcholines with unsaturated or cyclopropane acyl chains, Chem. Phys. Lipids 25:125.CrossRefGoogle Scholar
  139. Silvius, J. R., and McElhaney, R. N., 1980a, Effects of phospholipid acyl chain structure on thermotropic phase properties. 3. Phosphatidylcholines with (−)-and (±)-anteiso acyl chains, Chem. Phys. Lipids 26:67.CrossRefGoogle Scholar
  140. Silvius, J. R., and McElhaney, R. N., 1980b, Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B, Proc. Natl. Acad. Sci. USA 77:1255.PubMedCrossRefGoogle Scholar
  141. Silvius, J. R., Read, B. D., and McElhaney, R. N., 1979, Thermotropic phase transitions of phosphatidylcholines with odd-numbered n-acyl chains, Biochim. Biophys. Acta 555:175.PubMedCrossRefGoogle Scholar
  142. Silvius, J. R., Mak, N., and McElhaney, R. N., 1980, Lipid and protein composition and thermotropic lipid phase transitions in fatty acid-homogeneous membranes of Acholeplasma laidlawii B, Biochim. Biophys. Acta 597:199.PubMedCrossRefGoogle Scholar
  143. Sinensky, M., 1974, Homeoviscous adaptation—A homeoviscous process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 71:522.PubMedCrossRefGoogle Scholar
  144. Smith, M. W., 1976, Temperature adaptation in fish, Biochem. Soc. Symp. 41:43.PubMedGoogle Scholar
  145. Snow, J. W., Brandts, J. F., and Low, P. S., 1978, The effects of anion transport inhibitors on structural transitions in erythrocyte membranes, Biochim. Biophys. Acta 512:579.PubMedCrossRefGoogle Scholar
  146. Steim, J. M., 1970, Thermal phase transitions in biomembranes, in: Liquid Crystals and Ordered Fluids (J. F. Johnson and R. S. Porter, eds.), pp. 1–11, Plenum Press, New York.Google Scholar
  147. Steim, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. N., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Natl. Acad. Sci. USA 63:104.PubMedCrossRefGoogle Scholar
  148. Sternberg, B., Grupe, R., Preusser, E., and Göring, H., 1978, Influence of β-sitosterol on the thermal phase and on the permeability of 1,2-dipalmitoylphosphatidylcholine liposome membranes, Stud. Biophys. 68:125.Google Scholar
  149. Stewart, T. P., Hui, S. W., Portis, A. R., Jr., and Papahadjopoulos, D., 1979, Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles, Biochim. Biophys. Acta 556:1.PubMedCrossRefGoogle Scholar
  150. Stümpel, J., Nicksch, A., and Eibl, H., 1981, Calorimetric studies on saturated mixed-chain lecithin-water systems: Nonequivalence of acyl chains in the thermotropic phase transition, Biochemistry 20:662.PubMedCrossRefGoogle Scholar
  151. Sturtevant, J. M., Ho, C, and Reimann, A., 1979, Thermotropic behavior of some fluorodimyristoylphosphatidylcholines, Proc. Natl. Acad. Sci. USA 76:2239.PubMedCrossRefGoogle Scholar
  152. Susi, H., Sampugna, J., Hampson, J. W., and Ard, J. S., 1979, Laser-Raman investigation of phospholipid-polypeptide interactions in model membranes, Biochemistry 18:297.PubMedCrossRefGoogle Scholar
  153. Suurkuusk, J., Lentz, B. R., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1976, A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles, Biochemistry 15:1393.PubMedCrossRefGoogle Scholar
  154. Tanasijczuk, O. S., and Oja, T., 1978, High resolution calorimeter for the investigation of melting in organic and biological materials, Rev. Sci. Instrum. 49:1545.PubMedCrossRefGoogle Scholar
  155. Tremblay, P.-A., and Kates, M., 1981, Comparative physical studies of phosphatidylsulfoch-oline and phosphatidylcholine: Calorimetry, fluorescence polarization and electron paramagnetic resonance spectroscopy, Chem. Phys. Lipids 28:307.CrossRefGoogle Scholar
  156. Untracht, S. H., and Shipley, G. G., 1977, Molecular interactions between lecithin and sphin-gomyelin, J. Biol. Chem. 252:4449.Google Scholar
  157. van den Thillart, G., and de Bruin, G., 1981, Influence of environmental temperature on mitochrondrial membranes, Biochim. Biophys. Acta 640:439.PubMedCrossRefGoogle Scholar
  158. van Dijck, P. W. M., 1979, Negatively charged phospholipids and their position in the cholesterol affinity sequence, Biochim. Biophys. Acta 555:89.PubMedCrossRefGoogle Scholar
  159. van Dijck, P. W. M., de Kruijff, B., van Deenen, L. L. M., de Gier, J., and Demel, R. A., 1976a, The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcho-line-phosphatidylethanolamine bilayers, Biochim. Biophys. Acta 455:576.PubMedCrossRefGoogle Scholar
  160. van Dijck, P. W. M., van Zoelen, E. J. J., Seldenrijk, R., van Deenen, L. L. M., and de Gier, J., 1976b, Calorimetric behaviour of individual phospholipid classes from human and bovine erythrocyte membrane, Chem. Phys. Lipids 17:336.PubMedCrossRefGoogle Scholar
  161. van Dijck, P. W. M., Kaper, A. J., Oonk, H. A. J., and de Gier, J., 1977, Miscibility properties of binary phosphatidylcholine mixtures: A calorimetric study, Biochim. Biophys. Acta 470:58.PubMedCrossRefGoogle Scholar
  162. van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., van Deenen, L. L. M., and de Gier, J., 1978, Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine, Biochim. Biophys. Acta 512:84.PubMedCrossRefGoogle Scholar
  163. van Echteld, C. J. A, de Kruijff, B., and de Gier, J., 1980, Differential miscibility properties of various phosphatidylcholine/lysophosphatidylcholine mixtures, Biochim. Biophys. Acta 595:71.PubMedCrossRefGoogle Scholar
  164. van Zoelen, E. J. J., van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., and van Deenen, L. L. M., 1978, Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers, Biochim. Biophys. Acta 514:9.PubMedCrossRefGoogle Scholar
  165. Vaughan, D. J., 1976, Studies of lipid phase transitions in some model membranes using differential scanning calorimetry, M. Sc. thesis, Memorial University of Newfoundland.Google Scholar
  166. Vaughan, D. J., and Keough, K. M., 1974, Changes in phase transitions of phosphatidyle-thanolamine-and phosphatidylcholine-water dispersions induced by small modifications in the headgroup and backbone regions, FEBS Lett. 47:158.PubMedCrossRefGoogle Scholar
  167. Verkley, A. J., de Kruyff, B., Ververgaert, P. H. J. T., Tocanne, J. F., and van Deenen, L. L. M., 1974, The influence of pH, Ca2+ and protein on the thermotropic behavior of the negatively charged phospholipid, phosphatidylglycerol, Biochim. Biophys. Acta 339:432.CrossRefGoogle Scholar
  168. von Dreele, P. H., 1978, Estimation of lateral species separation from phase transitions in nonideal two-dimensional lipid mixtures, Biochemistry 17:3939.CrossRefGoogle Scholar
  169. Wilkinson, D. A., and Nagle, J. F., 1981, Dilatometry and calorimetry of saturated phospha-tidylethanolamine dispersions, Biochemistry 20:187.PubMedCrossRefGoogle Scholar
  170. Yang, R. D., Patel, K. M., Pownall, H. J., Knapp, R. D., Sklar, L. A., Crawford, R. B., and Morrisett, J. D., 1979, Biophysical properties of a major membrane phospholipid, dielaidoylphosphatidylethanolamine, found in an Escherichia coli fatty acid auxotroph, J. Biol. Chem. 254:8256.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • K. M. W. Keough
    • 1
  • P. J. Davis
    • 1
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations