Advertisement

Membrane Lipid Adaptation in Yeast

  • Kenneth Watson
Part of the Biomembranes book series (B, volume 12)

Abstract

It is well recognized that the lipid composition of yeast varies with the growth conditions, and the reviews by Hunter and Rose (1971) and Rattray et al. (1975) should be consulted for references prior to 1975. A comprehensive review of the metabolism of sterols in yeast has been published (Parks, 1978).

Keywords

Electron Paramagnetic Resonance Ergosterol Biosynthesis Yeast Mitochondrion Membrane Fatty Acid Composition Adenine Nucleotide Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, B. G., and Parks, L. W., 1969, Differential effect of respiratory inhibitors on ergosterol synthesis by Saccharomyces cerevisiae during adaption to oxygen, J. Bacteriol. 100:370.PubMedGoogle Scholar
  2. Ainsworth, P. J., Tustanoff, E. R., and Ball, A. J. S., 1972, Membrane phase transitions as a diagnostic tool for studying mitochondriogenesis, Biochem. Biophys. Res. Commun. 47:1299.PubMedGoogle Scholar
  3. Ainsworth, P. J., Janki, R. M., Tustanoff, E. R., and Ball, A. J. S., 1974, The incorporation of cytochrome oxidase into newly-forming yeast mitochondrial membranes, J. Bioenerg. 6:135.Google Scholar
  4. Alterthum, F., and Rose, A. H., 1973, Osmotic lysis of sphaeroplasts from Saccharomyces cerevisiae grown anaerobically in media containing different unsaturated fatty acids, J. Gen. Microbiol. 77:371.PubMedGoogle Scholar
  5. Andreasen, A. A., and Stier, T. J. B., 1953, Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth on a defined medium, J. Cell. Comp. Physiol. 41:23.Google Scholar
  6. Andreasen, A. A., and Stier, T. J. B., 1954, Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium, J. Cell. Comp. Physiol. 43:271.Google Scholar
  7. Ansell, G. B., Hawthorne, J. N., and Dawson, R. M. C. (eds), 1973, Form and Function of Phospholipids, Elsevier, Amsterdam.Google Scholar
  8. Arthur, H., and Watson, K., 1976, Thermal adaptation in yeast: Growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic and thermophilic yeasts, J. Bacteriol. 128:56.PubMedGoogle Scholar
  9. Astin, A. M., and Haslam, J. M., 1977, The effects of altered membrane sterol composition on oxidative phosphorylation in a haem mutant of Saccharomyces cerevisiae, Biochem. J. 166:287.PubMedGoogle Scholar
  10. Atkinson, K. D., Jansen, B., Kolat, A. I., Storm, E. M., Henry, S. A., and Fogel, S., 1980a, Yeast mutants auxotrophic for choline and ethanolamine, J. Bacteriol. 141:558.PubMedGoogle Scholar
  11. Atkinson, K. D., Fogel, S., and Henry, S. A., 1980b, Yeast mutants defective in phosphati-dylserine synthesis, J. Biol. Chem. 255:6653.PubMedGoogle Scholar
  12. Bard, M., Woods, R. A., and Haslam, J. M., 1974, Porphyrin mutants of Saccharomyces cerevisiae: Correlated lesions in sterol and fatty acid biosynthesis, Biochem. Biophys. Res. Commun. 56:324.PubMedGoogle Scholar
  13. Bard, M., Woods, R. A., Barton, D. H. R., Corrie, J. E. T., and Widdowson, D. A., 1977, Sterol mutants of Saccharomyces cerevisiae: Chromatographie analysis, Lipids 12:645.PubMedGoogle Scholar
  14. Bard, M. D., Lees, N. D., Burrows, L. S., and Kleinhans, F. W., 1978, Differences in crystal violet uptake and cation-induced death among yeast sterol mutants, J. Bacteriol. 135:1146.PubMedGoogle Scholar
  15. Barton, D. H. R., Corrie, J. E. T., Widdowson, D. A., Bard, M., and Woods, R. A., 1974, Biosynthesis of terpenes and steroids. Part IX. The sterols of some mutant yeasts and their relationship to the biosynthesis of ergosterol, J. Chem. Soc. Perkin Trans. 1 1974:326.Google Scholar
  16. Barton, D. H. R., Gunatilaka, A. L., Jarman, T. R., Widdowson, D. A., Bard, M., and Woods, R. A., 1975, Biosynthesis of terpenes and steroids. Part X. The sterols of some yeast mutants doubly defective in ergosterol biosynthesis, J. Chem. Soc. Perkin Trans. 1 1975:88.Google Scholar
  17. Bertoli, E., Finean, J. B., and Griffiths, D. E., 1976, The role of lipids in regulation of mitochondrial ATPase, FEBS Lett. 61:163.PubMedGoogle Scholar
  18. Bottema, C. K., and Parks, L. W., 1980, Sterol analysis of the inner and outer mitochondrial membranes in yeast, Lipids 15:987.Google Scholar
  19. Bulder, C. J. E. A., and Reinink, M., 1974, Unsaturated fatty acid composition of wild type and respiratory deficient yeasts after aerobic and anaerobic growth, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:445.Google Scholar
  20. Buttke, T. M., and Bloch, K., 1981, Utilization and metabolism of methylsterol derivatives in the yeast mutant strain GL, Biochemistry 20:3267.PubMedGoogle Scholar
  21. Buttke, T. M., Jones, S. D., and Bloch, K., 1980, Effect of sterol side chain fatty acid composition on growth and membrane fatty acid composition of Saccharomyces cerevisiae, J. Bacteriol. 144:124.PubMedGoogle Scholar
  22. Chapman, D., Gomez-Fernandez, J. C, and Goni, F. M., 1979, Intrinsic protein-lipid interactions, FEBS Lett. 98:211.PubMedGoogle Scholar
  23. Cobon, G. S., and Haslam, J. M., 1973, The effect of altered membrane sterol composition on the temperature dependence of yeast mitocondrial ATPase, Biochem. Biophys. Res. Commun. 52:320.PubMedGoogle Scholar
  24. Criddle, R. S., and Schatz, G., 1969, Promitochondrial of anaerobically grown yeast. I. Isolation and biochemical properties, Biochemistry 8:322.PubMedGoogle Scholar
  25. Culbertson, M. R., and Henry, S. A., 1975, Inositol requiring mutants of Saccharomyces cerevisiae, Genetics 80:23.PubMedGoogle Scholar
  26. Damsky, C. H., 1976, Environmentally induced changes in mitochondria and endoplasmic reticulum of Saccharomyces carlsbergensis yeast, J. Cell Biol. 71:123.PubMedGoogle Scholar
  27. Damsky, C. H., Nelson, W. M., and Calude, A., 1969, Mitochondria in anaerobically-grown lipid-limited brewer’s yeast, J. Cell Biol. 43:174.PubMedGoogle Scholar
  28. Dufour, J.-P., and Goffeau, A., 1978, Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe, J. Biol. Chem. 253:7026.PubMedGoogle Scholar
  29. Dufour, J.-P., and Goffeau, A., 1980, Phospholipid reactivation of the purified plasma membrane ATPase of yeast, J. Biol. Chem. 255:10591.PubMedGoogle Scholar
  30. Dufour, J.-P., and Tsong, T. Y., 1981, Plasma membrane ATPase of yeast: Activation and interaction with dimyristoylphosphatidylcholine vesicles, J. Biol. Chem. 256:1801.PubMedGoogle Scholar
  31. Eletr, S., and Keith, A. D., 1972, Spin-label studies of dynamics of lipid alkyl chains in biological membranes: Role of unsaturated sites, Proc. Natl. Acad. Sci. USA 69:1353.PubMedGoogle Scholar
  32. Eletr, S., Williams, M. A., Watkins, T., and Keith, A. D., 1974, Perturbations of the dynamics of lipid alkyl chains in membrane systems: Effect on the activity of membrane bound enzymes, Biochim. Biophys. Acta 339:190.Google Scholar
  33. Esfahani, M., Slomomn, D. J., Mele, L., and Teter, M. N., 1979, Lipid-protein interactions in membranes: Effect of lipid composition on mobility of spin-labelled cystein residues in yeast plasma membrane, J. Supramol. Struct. 10:277.PubMedGoogle Scholar
  34. Esfahani, M., Cavanaugh, J. R., Pfeffer, P. E., Luken, D. W., and Devlin, T. M., 1981, 19F-NMR and fluorescence polarization of yeast plasma membrane and isolated lipids, Biochem. Biophys. Res. Commun. 101:306.PubMedGoogle Scholar
  35. Fantin, D. J., and Tustanoff, E. R., 1981, Effect of amphotericin B, deuterium oxide and heat on yeast mitochondrial bioenergetics and on survival of yeast with altered sterol membranes, in: Current Developments in Yeast Research (G. G. Stewart and I. Russell, eds.), pp. 185–191, Pergamon Press, Elmsford, N.Y.Google Scholar
  36. Ferrante, G., Ohno, Y., and Kates, M., 1983, Influence of temperature and growth phase on desaturase activity of the mesophilic yeast, Candida lipolytica, Can. J. Biochem. Cell Biol. 61:171.PubMedGoogle Scholar
  37. Forrester, I. T., Watson, K., and Linnane, A. W., 1971, Mitochondrial membrane organization: A determinant of mitochondrial ribosomal RNA synthesis, Biochem. Biophys. Res. Commun. 43:409.PubMedGoogle Scholar
  38. Golub, E. G., Trocha, P., Liu, K. P., and Sprinson, D. B., 1974, Yeast mutants requiring ergosterol as only lipid supplement, Biochem. Biophys. Res. Commun. 56:571.Google Scholar
  39. Golub, E. G., Liu, K. P., Dayan, J., Adlersberg, M., and Sprinson, D. B., 1977, Yeast mutants deficient in heme biosynthesis and a heme-mutant additionally blocked in cyclization of 2,3-oxidosqualene, J. Biol. Chem. 252:2846.Google Scholar
  40. Gordon, P. A., and Stewart, P. R., 1971, The effect of antibiotics on lipid synthesis during respiratory development in Saccharomyces cerevisiae, Microbios 4:115.PubMedGoogle Scholar
  41. Haslam, J. M., and Al Mahdawi, S. A. H., 1980, The use of lipid mutants of Saccharomyces cerevisiae to investigate the role of unsaturated fatty acids and sterols in membrane function, Biochem. Soc. Trans. 8:34.PubMedGoogle Scholar
  42. Haslam, J. M., and Fellows, N. F., 1977, The effects of unsaturated fatty acid depletion on the proton permeability and energetic functions of yeast mitochondria, Biochem. J. 166:565.PubMedGoogle Scholar
  43. Haslam, J. M., Proudlock, J. W., and Linnane, A. W., 1971, Biogenesis of mitochondria. 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphor-ylation in Saccharomyces cerevisiae, J. Bioenerg. 2:351.PubMedGoogle Scholar
  44. Haslam, J. M., Astin, A. M., and Nichols, W. W., 1977, The effects of altered sterol composition on the mitochondrial adenine nucleotide transporter of Saccharomyces cerevisiae, Biochem. J. 166:559.PubMedGoogle Scholar
  45. Henry, S. A., and Fogel, S., 1971, Saturated fatty acid mutants in yeast, Mol. Gen. Genet. 113:1.PubMedGoogle Scholar
  46. Henry, S. A., Greenberg, M. L., Letts, V. A., Shicker, B., Klig, L., and Atkinson, K. D., 1981, Genetic regulation of phospholipid synthesis in yeast, in: Current Developments in Yeast Research (G. G. Stewart and I. Russell, eds.), pp. 311–316, Pergamon Press, Elmsford, N.Y.Google Scholar
  47. Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, K. A., Birdsall, N. J. M., Metcalfe, J. C, and Warren, G. B., 1976, Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin, Biochemistry 15:4145.PubMedGoogle Scholar
  48. Holub, B. J., and Lands, W. E. M., 1975, Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply, Can. J. Biochem. 53:1262.PubMedGoogle Scholar
  49. Hossack, J. A., and Rose, A. H., 1976, Fragility of plasma membrane in Saccharomyces cerevisiae enriched with different sterols, J. Bacteriol. 127:67.PubMedGoogle Scholar
  50. Hunter, K., and Rose, A. H., 1971, Yeast lipids and membranes, in: The Yeasts, Vol. 2 (A. H. Rose and J. S. Harrison, eds.), pp. 211–270, Academic Press, New York.Google Scholar
  51. Hunter, K., and Rose, A. H., 1972, Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature, Biochim. Biophys. Acta 260:639.PubMedGoogle Scholar
  52. Isaacson, Y. A., Deroo, P. W., Rosenthal, A. F., Bittman, R., Mclntyre, J. O., Bock, H. G., Gazzotti, P., and Fleischer, S., 1979, The structural specificity of lecithin for activation of purified d-β-hydroxybutyrate apodehydrogenase, J. Biol. Chem. 254:117.PubMedGoogle Scholar
  53. Janki, R. M., Aitnal, H. N., Tustanoff, E. R., and Ball, A. J. S., 1975, The biogenesis of mitochondrial membranes in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta 375:446.PubMedGoogle Scholar
  54. Johnson, B., and Brown, C. M., 1972, A possible relationship between the fatty acid composition of yeasts and the ‘petite’ mutation, Antonie van Leeuwenhoek J. Microbiol. Serol. 38:137.Google Scholar
  55. Jollow, D., Kellerman, G. M., and Linnane, A. W., 1968, The biogenesis of mitochondria. III. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cell, J. Cell Biol. 37:221.PubMedGoogle Scholar
  56. Jost, P. C, Griffiths, O. H., Capaldi, R. A., and Vanderkooi, G., 1973a, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. USA 70:480.PubMedGoogle Scholar
  57. Jost, P. C, Griffiths, O. H., Calpaldi, R. A., and Vanderkooi, G., 1973b, Identification and extent of fluid bilayer regions in membranous cytochrome oxidase, Biochim. Biophys. Acta 311:141.PubMedGoogle Scholar
  58. Kang, S. Y., Gutowski, H. S., Hsung, J. C., Jacobs, R., King, T. E., Rice, D., and Oldfield, E., 1979, Nuclear magnetic resonance investigation of the cytochrome oxidase-phospholipid interaction: A new model for boundary lipid, Biochemistry 18:3257.PubMedGoogle Scholar
  59. Karst, F., and Jund, R., 1976, Sterol replacement in Saccharomyces cerevisiae: Effect on cellular permeability and sensitivity to nystatin, Biochem. Biophys. Res. Commun. 71:535.PubMedGoogle Scholar
  60. Karst, F., and Lacroute, F., 1974, Yeast mutant requiring only a sterol as a growth supplement, Biochem. Biophys. Res. Commun. 59:370.PubMedGoogle Scholar
  61. Karst, F., and Lacroute, F., 1977, Ergosterol biosynthesis in Saccharomyces cerevisiae, Mol. Gen. Genet. 154:269.PubMedGoogle Scholar
  62. Kates, M., 1964, Bacterial lipids, Adv. Lipid Res. 2:17.PubMedGoogle Scholar
  63. Kates, M., and Baxter, R. M., 1962, Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature, Can. J. Biochem. Physiol. 40:1213.PubMedGoogle Scholar
  64. Keith, A. D., Resnick, M. R., and Haley, A. B., 1969, Fatty acid desaturase mutants of Saccharomyces cerevisiae, J. Bacteriol. 41:415.Google Scholar
  65. Keith, A. D., Wisnieski, B. J., Henry, S. A., and Williams, J. C., 1973, Membranes of yeast and Neurospora: Lipid mutants and physical studies, in: Lipids and Biomembranes of Eucaryotic Microorganisms (J. A. Erwin, ed.), pp. 259–321, Academic Press, New York.Google Scholar
  66. Klein, H. P., 1955, Synthesis of lipids in resting cells of Saccharomyces cerevisiae, J. Bacteriol. 69:620.PubMedGoogle Scholar
  67. Kleinhans, F. W., Lees, N. D., Bard, M. D., Haak, R. A., and Woods, R. A., 1979, ESR determinations of membrane permeability in a yeast sterol mutant, Chem. Phys. Lipids 23:143.PubMedGoogle Scholar
  68. Knobling, A., Schiffman, D., Sickinger, H. D., and Schwizer, F., 1975, Malonyl and palmityl transferase-less mutants of the yeast fatty-acid synthetase complex, Eur. J. Biochem. 56:359.PubMedGoogle Scholar
  69. Knowles, P. F., Watts, A., and Marsh, D., 1979, Spin-label studies of lipid immobilization in dimyristolyphosphatidylcholine-substituted cytochrome oxidase, Biochemistry 18:4480.PubMedGoogle Scholar
  70. Knowles, P. F., Watts, A., and Marsh, D., 1981, Spin-label studies of head-group specificity in the interaction of phospholipids with yeast cytochrome oxidase, Biochemistry 20:5888.PubMedGoogle Scholar
  71. Konttinen, K., and Suomalainen, H., 1977, Effect of incorporating additional oleic acid into the plasma membrane of baker’s yeast on the permeation of pyruvic acid, J. Inst. Brew. London 83:251.Google Scholar
  72. Lands, W. E. M., 1980, Dialogue between membranes and their lipid-metabolizing enzymes, Biochem. Soc. Trans. 8:25.PubMedGoogle Scholar
  73. Lees, N. D., Bard, M., Kemple, M. D., Haak, R. A., and Kleinhaus, F. W., 1979, ESR determination of membrane order parameter in yeast sterol mutants, Biochim. Biophys. Acta 553:469.PubMedGoogle Scholar
  74. Letts, V., and Dawes, I., 1979, Mutations affecting lipid biosynthesis of Saccharomyces cerevisiae: Isolation of ethanolamine auxotrophs, Biochem. Soc. Trans. 7:976.PubMedGoogle Scholar
  75. Light, R. J., Lennarz, W. J., and Bloch, K., 1962, The metabolism of hydroxystearic acids in yeast, J. Biol. Chem. 237:1793.PubMedGoogle Scholar
  76. Londesborough, J., 1980, The causes of sharply bent or discontinuous Arrhenius plots for enzyme-catalyzed reactions, Eur. J. Biochem. 105:211.PubMedGoogle Scholar
  77. Lyons, J. M., Wheaton, T. A., and Pratt, H. K., 1964, Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants, Plant Physiol. 39:262.PubMedGoogle Scholar
  78. McLean-Bowen, C. A., and Parks, L. W., 1981, Corresponding changes in kynurenine hydroxylase activity, membrane fluidity, and sterol composition in Saccharomyces cerevisiae mitochondria, J. Bacteriol. 143:1325.Google Scholar
  79. McMurrough, I., and Rose, A. H., 1973, Effects of temperature variation on the fatty acid composition of psychrophilic Candida species, J. Bacteriol. 114:451.PubMedGoogle Scholar
  80. Malpartida, F., and Serrano, R., 1981, Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes, J. Biol. Chem. 256:4175.PubMedGoogle Scholar
  81. Marzuki, S., Hall, R. M., and Linnane, A. W., 1974, Induction of respiratory incompetent mutants by unsaturated fatty acid depletion in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 57:372.PubMedGoogle Scholar
  82. Marzuki, S., Cobon, G. S., Haslam, J. M., and Linnane, A. W., 1975a, Biogenesis of mitochondria: The effects of altered steady-state membrane lipid composition on mitochondrial-energy metabolism in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 169:577.PubMedGoogle Scholar
  83. Marzuki, S., Cobon, G. S., Crowfoot, P. D., and Linnane, A. W., 1975b, The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein synthesizing system, Arch. Biochem. Biophys. 169:591.PubMedGoogle Scholar
  84. Moulin, G., Ratomahenina, R., Galzy, P., and Bezard, J., 1975, Relationship between the presence of linolenic acid and the ability to form respiration-deficient mutants in yeast, Folia Microbiol. (Prague) 20:396.Google Scholar
  85. Nes, W. R., Adler, J. H., Sekula, B. C, and Krevitz, K., 1976, Discrimination between cholesterol and ergosterol by yeast membranes, Biochem. Biophys. Res. Commun. 71:1296.PubMedGoogle Scholar
  86. Nes, W. R., Sekula, B. C., Nes, W. D., and Adler, J. H., 1978, The functional importance of structural features of ergosterol in yeast, J. Biol. Chem. 253:6218.PubMedGoogle Scholar
  87. Okuyama, H., Saito, M., Joshi, V. C., Gunsberg, S., and Wakil, S. J., 1979, Regulation by temperature of the chain length of fatty acids in yeast, J. Biol. Chem. 254:12281.PubMedGoogle Scholar
  88. Packer, L., Williams, M. A., and Criddle, R. S., 1973, Freeze-fracture studies on mitochondria from wild-type and respiratory-deficient yeasts, Biochim. Biophys. Acta 292:92.PubMedGoogle Scholar
  89. Paddy, M. R., Dahlquist, F. W., Davis, J. H., and Bloom, M., 1981, Dynamical and temperature-dependent effects of lipid-protein interactions: Application of deuterium nuclear magnetic resonance and electron paramagnetic resonace spectroscopy to the same reconstitutions of cytochrome c oxidase, Biochemistry 20:3152.PubMedGoogle Scholar
  90. Paltauf, F., and Schatz, G., 1969, Promitochondria of anaerobically grown yeast. II. Lipid composition, Biochemistry 8:335.PubMedGoogle Scholar
  91. Parks, L. W., 1978, Metabolism of sterols in yeast, CRC Crit. Rev. Microbiol. 6:301.PubMedGoogle Scholar
  92. Plattner, H., and Schatz, G., 1969, Promitochondria of anaerobically grown yeast. III. Morphology, Biochemistry 8:339.PubMedGoogle Scholar
  93. Proudlock, J. W., Wheeldon, L. W., Jollow, D. J., and Linnane, A. W., 1968, Role of sterols in Saccharomyces cerevisiae, Biochim. Biophys. Acta 152:434.PubMedGoogle Scholar
  94. Pugh, E. L., and Kates, M., 1975, Characterization of a membrane bound phospholipid desaturase system of Candida lipolytica, Biochim. Biophys. Acta 380:442.PubMedGoogle Scholar
  95. Raetz, C. R. H., 1978, Enzymology, genetics and regulation of phospholipid synthesis in Escherichia coli, Microbiol. Rev. 42:614.PubMedGoogle Scholar
  96. Rance, M., Jeffrey, K. R., Tulloch, A. P., Butler, K. W., and Smith, I. C, 1980, Orientational order of unsaturated lipids in the membranes of Acholeplasma laidlawii as observed by 2H-NMR, Biochim. Biophys. Acta 600:245.PubMedGoogle Scholar
  97. Rattray, J. B. M., Shibeci, A., and Kidby, D. K., 1975, Lipids of yeast, Bacteriol. Rev. 39:197.PubMedGoogle Scholar
  98. Resnick, M. A., and Mortimer, R. K., 1966, Unsaturated fatty acid mutants of Saccharomyces cerevisiae, J. Bacteriol. 92:597.PubMedGoogle Scholar
  99. Sandermann, H., 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys Acta 515:209.PubMedGoogle Scholar
  100. Schweizer, E., and Boiling, H., 1970, A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis, Proc. Natl. Acad. Sci. USA 67:660.PubMedGoogle Scholar
  101. Sherman, F., 1959a, The effects of elevated temperatures on yeast. I. Nutrient requirements for growth at elevated temperatures, J. Cell. Comp. Physiol. 54:29.PubMedGoogle Scholar
  102. Sherman, F., 1959b, The effects of elevated temperatures on yeast. II. Induction of respiratory-deficient mutants, J. Cell. Comp. Physiol. 54:37.PubMedGoogle Scholar
  103. Shimizu, I., and Katsuki, H., 1975, Effect of temperature on ergosterol biosynthesis in yeast, J. Biochem. 77:1023.PubMedGoogle Scholar
  104. Silvius, J. R., Read, B. D., and McElhaney, R. N., 1978, Membrane enzymes: Artifacts in Arrhenius plots due to temperature dependence of substrate-binding affinity, Science 199:902.PubMedGoogle Scholar
  105. Sinensky, M., 1974, Homeoviscous adaptation: A process that regulates the viscosity of membrane lipids of Escherichia coli, Proc. Natl. Acad. Sci. USA 71:522.PubMedGoogle Scholar
  106. Starr, P. R., and Parks, L. W., 1962, Some factors affecting sterol formation in Saccharomyces cerevisiae, J. Bacteriol. 83:1042.PubMedGoogle Scholar
  107. Stokes, J. L., 1971, Influence of temperature on the growth and metabolism of yeasts, in: The Yeasts, Vol. 2 (A. H. Rose and J. S. Harrison, eds.), pp. 119–134, Academic Press, New York.Google Scholar
  108. Taylor, F. R., and Parks, L. W., 1980, Adaptation of Saccharomyces cerevisiae to growth on cholesterol: Selection of mutants defective in the formation of lanosterol, Biochem. Biophys. Res. Commun. 95:1437.PubMedGoogle Scholar
  109. Thomas, D. S., and Rose, A. H., 1979, Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by lipid composition, Arch. Microbiol. 122:49.PubMedGoogle Scholar
  110. Thomas, D. S., Hossack, J. A., and Rose, A. H., 1978, Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae, Arch. Microbiol. 117:239.PubMedGoogle Scholar
  111. Thompson, E. D., and Parks, L. W., 1972, Lipids associated with cytochrome oxidase from yeast mitochondria, Biochim. Biophys. Acta 260:601.PubMedGoogle Scholar
  112. Thompson, E. D., and Parks, L. W., 1974, The effect of altered sterol composition on cytochrome oxidase and S-adenosyl-methionine: Δ24 sterol methyltransferase of yeast mitochondria, Biochem. Biophys. Res. Commun. 57:1207.PubMedGoogle Scholar
  113. Thorne, C. A. J., and Watson, K., 1981, The fatty-acyl composition of phospholipids from psychrophilic, mesophilic and thermophilic Torulopsis sp. is dependent on the growth phase, FEMS Microbiol. Lett. 10:137.Google Scholar
  114. Travassos, L. R. R. G., and Cury, A., 1971, Thermophilic enteric yeasts, Annu. Rev. Microbiol. 25:49.PubMedGoogle Scholar
  115. Tzagoloff, A., Rubin, M. S., and Sierra, M. F., 1973, Biogenesis of mitochondrial enzymes, Biochim. Biophys. Acta 301:71.PubMedGoogle Scholar
  116. van Deenen, L. L. M., 1981, Topology and dynamics of phospholipids in membranes, FEBS Lett. 123:3.PubMedGoogle Scholar
  117. Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M., 1975, Cholesterol is excluded from phospholipid annulus surrounding an active calcium transport protein, Nature (London) 255:684.Google Scholar
  118. Watson, K., 1972, The organization of ribosomal granules within mitochondrial structures of aerobic and anaerobic cells of Saccharomyces cerevisiae, J. Cell Biol. 55:721.PubMedGoogle Scholar
  119. Watson, K., 1980, Homeoviscous adaptation in psychrophilic, mesophilic, and thermophilic yeasts, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 349–363, Humana Press, Clifton, N.J.Google Scholar
  120. Watson, K., and Rose, A. H., 1979, In vivo desaturation of fatty acyl residues on phosphati-dylcholine during aerobic induction of anaerobically grown Saccharcomyces cerevisiae, FEMS Microbiol. Lett. 5:321.Google Scholar
  121. Watson, K., and Rose, A. H., 1980, Fatty-acyl composition of the lipids of Saccharomyces cerevisiae grown aerobically or anaerobically in media containing different fatty acids, J. Gen. Microbiol. 117:225.Google Scholar
  122. Watson, K., Haslam, J. M., and Linnane, A. W., 1970, Biogenesis of mitochondria: The isolation of mitochondrial structures from anaerobically grown Saccharomyces cerevisiae, J. Cell Biol. 46:88.PubMedGoogle Scholar
  123. Watson, K., Haslam, J. M., Veitch, B., and Linnane, A. W., 1971, Mitochondrial precursors in anaerobically grown yeast, in: Autonomy and Biogenesis of Mitochondria and Chloroplasts (N. K. Boardman, A. W. Linnane, and R. M. Smillie, eds.), pp. 161–174, North-Holland, Amsterdam.Google Scholar
  124. Watson, K., Bertoli, E., and Griffiths, D. E., 1973, Phase transitions in yeast mitochondrial membranes: The transition temperatures of succinate dehydrogenase and F1-ATPase in mitochondria of aerobic and anaerobic cells, FEBS Lett. 30:120.Google Scholar
  125. Watson, K., Houghton, R. L., Bertoli, E., and Griffiths, D. E., 1975a, Membrane lipid un-saturation and mitochondrial function in Saccharomyces cerevisiae, Biochem. J. 146:709.Google Scholar
  126. Watson, K., Bertoli, E., and Griffiths, D. E., 1975b, Phase transitions in yeast mitochondrial membranes: The effect of temperature on the energies of activation of the respiratory enzymes of Saccharomyces cerevisiae, Biochem. J. 146:701.Google Scholar
  127. Watson, K., Arthur, H., and Shipton, W. A., 1976, Leucosporidium yeasts: Obligate psychro-philes which alter membrane lipid and cytochrome composition with temperature, J. Gen. Microbiol. 97:11.PubMedGoogle Scholar
  128. Watson, K., Arthur, H., and Morton, H., 1978, Thermal adaptation in yeast: Obligate psychrophiles are obligate aerobes, and obligate thermophiles are fakultative anaerobes, J. Bacteriol. 136:815.PubMedGoogle Scholar
  129. Watson, K., Arthur, H., and Blakey, M., 1980, Biochemical correlations among the thermophilic enteric yeasts Torulopsis bovina, Torulopsis pintolopesii, Saccharomyces telluris, and Candida slooffii, J. Bacteriol. 143:693.PubMedGoogle Scholar
  130. Weete, J. D. (ed.), 1974, Fungal Lipid Biochemistry, Plenum Press, New York.Google Scholar
  131. Woods, R. A., 1971, Nystatin-resistant mutants of yeast: Alterations in sterol content, J. Bacteriol. 108:69.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kenneth Watson
    • 1
  1. 1.Department of Chemistry and BiochemistryJames Cook University of North QueenslandTownsvilleAustralia

Personalised recommendations