Fluidity of Membrane Lipids

  • William E. M. Lands
  • Frank S. Davis
Part of the Biomembranes book series (B, volume 12)


In considering the various fatty acids that occur in living cells, we have questioned whether or not unsaturated fatty acids serve only to establish membrane fluidity. If this were their only role, then the wide variety of acyl structures that occurs in nature seems unnecessary since oleate (cis-9–18: 1) or palmitoleate (cis-9–16:1) appears capable of giving whatever fluidity would be required for a cellular membrane. Many membrane-related events are frequently regarded to have a good qualitative correlation with the apparent state of lipid fluidity in a way that provides little incentive to look beyond that correlative relationship. If some role for unsaturated acids beyond fluidity does occur, we will need a careful examination of the data to make it evident. This review examines quantitative evidence on the degree to which the contribution of an acyl chain to membrane fluidity influences cell function. The information is presented in a format that facilitates recognition of acyl chain effects that might be attributed to phenomena other than fluidity.


Membrane Lipid Unsaturated Fatty Acid Membrane Fluidity Acyl Chain Unsaturated Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, J., 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44:846.CrossRefGoogle Scholar
  2. Barber, E. D., and Lands, W. E. M., 1973, Quantitative measurement of the effectiveness of unsaturated fatty acids required for the growth of Saccharomyces cerevisiae, J. Bacteriol. 115:543.PubMedGoogle Scholar
  3. Barve, J. A., and Gunstone, F. D., 1971, Chem. Phys. Lipids 7:311CrossRefGoogle Scholar
  4. Chung, A. E., and Law, J. H., 1964, Cyclopropane fatty acid synthetase: Partial purification and properties, Biochemistry 3:967.PubMedCrossRefGoogle Scholar
  5. Cox, G. S., Kaback, H. R., and Weissbach, H., 1974, Defective transport in S-adenosylme-thionine synthetase mutants of Escherichia coli, Arch. Biochem. Biophys. 161:610.PubMedCrossRefGoogle Scholar
  6. Cox, G. S., Weissbach, H., and Kaback, H. R., 1975, Transport in an Escherichia coli fatty acid auxotroph, J. Biol. Chem. 250:4542.PubMedGoogle Scholar
  7. Cronan, J. E., 1968, Phospholipid alterations during growth of Escherichia coli, J. Bacteriol. 95:2054.PubMedGoogle Scholar
  8. Cronan, J. E., 1975, Thermal regulation of the membrane lipid composition of Escherichia coli, J. Biol. Chem. 250:7074.PubMedGoogle Scholar
  9. Cronan, J. E., and Gelmann, E. P., 1973, An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli, J. Biol. Chem. 248:1188.PubMedGoogle Scholar
  10. Cronan, J. E., Nunn, W. D., and Batchelor, J. G., 1974, Studies on the biosynthesis of cyclopropane fatty acids in Escherichia coli, Biochim. Biophys. Acta 348:63.PubMedGoogle Scholar
  11. Cronan, J. E., Reed, R., Taylor, F. R., and Jackson, M. B., 1979, Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli, J. Bacteriol. 138:118.PubMedGoogle Scholar
  12. Croom, J. A., and McNeill, J. J., 1961, The long-chain fatty acids of certain biotin-requiring bacteria, Bacteriol. Proc. p. 170.Google Scholar
  13. Eletr, S., and Keith, A. D., 1972, Spin-label studies of dynamics of lipid alkyl chains in biological membranes: Role of unsaturated sites, Proc. Natl. Acad. Sci. USA 69:1353.PubMedCrossRefGoogle Scholar
  14. Fox, C. F., 1969, A lipid requirement for induction of lactose transport in Escherichia coli, Proc. Natl. Acad. Sci. USA 63:850.PubMedCrossRefGoogle Scholar
  15. Fujii, D. K., and Fulco, A. J., 1977, Biosynthesis of unsaturated fatty acids by bacilli, J. Biol. Chem. 252:3660.PubMedGoogle Scholar
  16. Fulco, A. J., 1972, The biosynthesis of unsaturated fatty acids by bacilli, J. Biol. Chem. 247:3511.PubMedGoogle Scholar
  17. Fulco, A. J., and Fujii, D. K., 1980, Adaptive regulation of membrane lipid biosynthesis in bacilli by environmental temperature in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation, (M. Kates and A. Kuksis, eds.), p. 79, Humana Press, Clifton, N.J.Google Scholar
  18. Garwin, J. L., and Cronan, J. E., 1980, Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis, J. Bacteriol. 141:1457.PubMedGoogle Scholar
  19. Garwin, J. L., Klages, A. L., and Cronan, J. E., 1980, β-Ketoacyl-acyl carrier protein synthase II of Escherichia coli, J. Biol. Chem. 255:3263.PubMedGoogle Scholar
  20. Gelmann, E. P., and Cronan, J. E., 1972, Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid, J. Bacteriol. 112:381.PubMedGoogle Scholar
  21. Goldfine, H., 1972, Comparative aspects of bacterial lipids, Adv. Microbiol. Physiol. 8:1.CrossRefGoogle Scholar
  22. Harder, M. E., Beacham, I. R., Cronan, J. E., Beacham, K., Honegger, J. L., and Silbert, D. F., 1972, Temperature-sensitive mutants of Escherichia coli requiring saturated and unsaturated fatty acids for growth: Isolation and properties, Proc. Natl. Acad. Sci. USA 69:3105.PubMedCrossRefGoogle Scholar
  23. Hildebrand, J. H., and Lamoreaux, R. H., 1972, Fluidity: A general theory, Proc. Natl. Acad. Sci. USA 69:3428.PubMedCrossRefGoogle Scholar
  24. Holub, B. J., and Lands, W. E. M., 1975, Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply, Can. J. Biochem. 53:1262.PubMedCrossRefGoogle Scholar
  25. Hunter, K., and Rose, A. H., 1972, Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature, Biochim. Biophys. Acta 260:639.PubMedGoogle Scholar
  26. Jackson, M. B., and Cronan, J. E., 1978, An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli, Biochim. Biophys. Acta 512:472.PubMedCrossRefGoogle Scholar
  27. Johnston, J. A., Ghadially, R. C., Roberts, R. N., and Fuhr, B. W., 1962, Myo-inositol activity of oxidation products derived from myo-inositol, Arch. Biochem. Biophys. 99:537.CrossRefGoogle Scholar
  28. Knivett, V. A., and Cullen, J., 1965, Some factors affecting cyclopropane acid formation in Escherichia coli, Biochem. J. 96:771.PubMedGoogle Scholar
  29. Lands, W. E. M., 1979, Guidelines to Metabolic Therapy, Vol. 8, No. 1, The Upjohn Co., Kalamazoo, Mich.Google Scholar
  30. Lands, W. E. M., 1980, Fluidity of membrane lipids, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), Humana Press, Clifton, N.J.Google Scholar
  31. Lands, W. E. M., Ohlrogge, J. B., Robinson, J. R., Sacks, R. W., Barve, J. A., and Gunstone, F. D., 1977, Quantitative effects of unsaturated fatty acids in microbial mutants, Biochim. Biophys. Acta 486:451.PubMedGoogle Scholar
  32. Lands, W. E. M., Sacks, R. W., Sauter, J., and Gunstone, F., 1978, Selective effects of fatty acids upon cell growth and metabolic regulation, Lipids 94:878.CrossRefGoogle Scholar
  33. Law, J. PL., Zalkin, H., and Kaneshiro, T., 1963, Transmethylation reactions in bacterial lipids, Biochim. Biophys. Acta 70:143.CrossRefGoogle Scholar
  34. Linden, C. D., Wright, K. L., McConnell, H. M., and Fox, C. F., 1973, Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli, Proc. Natl. Acad. Sci. USA 70:2271.PubMedCrossRefGoogle Scholar
  35. Longley, R. P., Rose, A. H., and Knights, B. A., 1968, Composition of the protoplast membrane from Saccharomyces cerevisiae, Biochem. J. 108:401.PubMedGoogle Scholar
  36. McGarrity, J. T., and Armstrong, J. B., 1975, The effects of salt on phospholipid fatty acid composition in Escherichia coli K-12, Biochim. Biophys. Acta 398:258.PubMedGoogle Scholar
  37. Marr, A. G., and Ingraham, J. L., 1962, Effects of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol. 84:1260.PubMedGoogle Scholar
  38. Mavis, R. D., and Vagelos, P. R., 1972, The effects of phospholipid fatty acid composition on membrane enzymes in Escherichia coli, J. Biol. Chem. 247:652.PubMedGoogle Scholar
  39. Melchoir, D. L., and Morowitz, H. J., 1973, Dilatometry of biological membranes, Biochemistry 12:1929.CrossRefGoogle Scholar
  40. Monod, J., 1949, The growth of bacterial cultures, Annu. Rev. Microbiol. 3:371.CrossRefGoogle Scholar
  41. Nunn, W. D., and Cronan, J. E., 1974, rel gene control of lipid synthesis in Escherichia coli, J. Biol. Chem. 249:3994.PubMedGoogle Scholar
  42. Ohlrogge, J. B., Barber, E. D., Lands, W. E. M., Gunstone, F. D., and Ismail, I. A., 1976, Quantitative effects of unsaturated fatty acids in microbial mutants. VI. Selective growth responses of yeast and bacteria to cis-octadecenoate isomers, Can. J. Biochem. 54:736.PubMedCrossRefGoogle Scholar
  43. Okuyama, H., Lands, W. E. M., Christie, W. W., and Gunstone, F. D., 1969, Selective transfer of cyclopropane acids by acyl coenzyme A: phospholipid acyl-transferases, J. Biol. Chem. 244:6514.PubMedGoogle Scholar
  44. Okuyama, H., Lands, W. E. M., Gunstone, F. D., and Barve, J. A., 1972, Selective transfers of trans-ethylenic acids by acyl coenzyme A: phospholipid acyl-transferases, Biochemistry 11:4392.PubMedCrossRefGoogle Scholar
  45. Okuyama, H., Yamada, K., Kameyama, Y., Ikezawa, H., Akamatsu, Y., and Nojima, S., 1977, Regulation of membrane lipid synthesis in Escherichia coli after shifts in temperature, Biochemistry 16:2668.PubMedCrossRefGoogle Scholar
  46. Overath, P., and Träuble, H., 1973, Phase transitions in cells, membranes and lipids of Escherichia coli: Detection by fluorescent probes, light scattering and dilatometry, Biochemistry 12:2625.PubMedCrossRefGoogle Scholar
  47. Overath, P., Schairer, H. V., and Stoffel, W., 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 67:606.PubMedCrossRefGoogle Scholar
  48. Overath, P., Hill, F. F., and Lamnek-Hirsch, I., 1971, Biogenesis of E. coli embrane: Evidence for randomization of lipid phase, Nature New Biol. 234:264.PubMedGoogle Scholar
  49. Plachy, W. Z., Lanyi, J. K., and Kates, M., 1974, Lipid interactions in membranes of extremely halophilic bacteria. I. Electron spin resonance and dilatometric studies of bilayer structure, Biochemistry 13:4906.PubMedCrossRefGoogle Scholar
  50. Pluschke, G., and Overath, P., 1981, Function of phospholipids in Escherichia coli, J. Biol. Chem. 256:3207.PubMedGoogle Scholar
  51. Proudlock, J. W., Haslan, J. M., and Linnane, A. W., 1971, Biogenesis of mitochondria. 19. Effects of unsaturated fatty acid depletion on lipid composition and energy metabolism of a fatty acid desaturase mutant of Saccharomyces cerevisiae, J. Bioenerg. 2:327.PubMedCrossRefGoogle Scholar
  52. Reitz, R. C., Sheikh, M., Lands, W. E. M., Ismail, I. A., and Gunstone, F. D., 1969, Effects of ethylenic bond position upon acyl-transferase activity with isomeric cis-octadecenoyl co-enzyme A thiol esters, Biochim. Biophys. Acta 176:480.PubMedGoogle Scholar
  53. Schairer, H. V., and Overath, P., 1969, Lipids containing trans-unsaturated fatty acids change the temperature characteristic of thiomethylgalactoside accumulations in Escherichia coli, J. Mol. Biol. 44:209.PubMedCrossRefGoogle Scholar
  54. Scholfield, C. R., Davison, V. L., and Dalton, H. J., 1967, Analysis for geometrical and positional isomers of fatty acids in partially hydrogenated fats, J. Am. Oil Chem. Soc. 44:648.PubMedCrossRefGoogle Scholar
  55. Shaw, M. K., and Ingraham, J. L., 1965, Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature, J. Bacteriol. 90:141.PubMedGoogle Scholar
  56. Silbert, D. F., 1970, Arrangement of fatty acyl groups in phosphatidylethanolamine from a fatty acid auxotroph of Escherichia coli, Biochemistry 9:3631.PubMedCrossRefGoogle Scholar
  57. Silbert, D. F., and Vagelos, P. R., 1967, Fatty acid mutant of E. coli lacking a β-hydroxyde-canoyl thioester dehydrase, Proc. Natl. Acad. Sci. USA 58:1579.PubMedCrossRefGoogle Scholar
  58. Silbert, D. F., Cronan, J. E., Beacham, I. R., and Harder, M. E., 1974, Genetic engineering of membrane lipid, Fed. Proc. 33:1725.PubMedGoogle Scholar
  59. Silvius, J. R., and McElhaney, R. N., 1978, Growth and membrane lipid properties of Acholeplasma laidlawii B lacking fatty acid heterogeneity, Nature (London) 272:645.CrossRefGoogle Scholar
  60. Sinensky, M., 1971, Temperature control of phospholipid biosynthesis in Escherichia coli, J. Bacteriol. 106:449.PubMedGoogle Scholar
  61. Sinensky, M., 1974, Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 71:522.PubMedCrossRefGoogle Scholar
  62. Sinensky, M., 1978, Defective regulation of cholesterol biosynthesis and plasma membrane fluidity in a Chinese hampster ovary cell mutant, Proc. Natl. Acad. Sci. USA 75:1247.PubMedCrossRefGoogle Scholar
  63. Sinensky, M., 1980, Adaptive alteration in phospholipid composition of plasma membranes from a somatic cell mutant defective in the regulation of cholesterol biosynthesis, J. Cell Biol. 85:166.PubMedCrossRefGoogle Scholar
  64. Sinensky, M., and Kleiner, J., 1981, The effect of reagents that increase membrane fluidity on the activity of 3-hydroxyl-3-methyl glutaryl coenzyme A reductase in the CHO-K-1 cell, J. Cell Physiol. 108:309.PubMedCrossRefGoogle Scholar
  65. Sinensky, M., Duwe, G., and Pinkerton, F., 1979, Defective regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in a somatic cell mutant, J. Biol. Chem. 254:4482.PubMedGoogle Scholar
  66. Singleton, W. S., 1960, Properties of the lipid state in: Fatty Acids 2nd ed., Part I (K. S. Markley, ed.), pp. 499–608, Interscience, New York.Google Scholar
  67. Snell, E. E., 1950, Microbiological methods in vitamin research in: Vitamin Methods, Vol. 1 (P. Gyorgy, ed.), Academic Press, New York.Google Scholar
  68. Stanier, R. Y., Doudorff, M., and Adelberg, E. A., 1963, The Microbial World, 2nd ed., p. 707, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  69. Suomalaninen, H., and Keranen, A. J. A., 1968, The fatty acid composition of baker’s and brewer’s yeast, Chem. Phys. Lipids 2:296.CrossRefGoogle Scholar
  70. Tamai, Y., Lands, W. E. M., Barve, J. A., and Gunstone, F. D., 1973, Selective transfers of acetylenic acids to form lecthins, Biochim. Biophys. Acta 296:563.PubMedGoogle Scholar
  71. Taylor, F. R., and Cronan, J. E., 1976, Selection and properties of Escherichia coli mutants defective in the synthesis of cyclopropane fatty acids, J. Bacteriol. 125:518.PubMedGoogle Scholar
  72. Thilo, L., and Overath, P., 1976, Randomization of membrane lipids in relation to transport system assembly in Escherichia coli, Biochemistry 15:328.PubMedCrossRefGoogle Scholar
  73. Thilo, L., Träuble, H., and Overath, P., 1977, Mechanistic interpretation of the influence of lipid phase transitions on transport functions, Biochemistry 16:1283.PubMedCrossRefGoogle Scholar
  74. Tsao, Y. K., and Lands, W. E. M., 1980, Cell growth with trans fatty acids as affected by adenosine 3′,5′-monophosphate and membrane fluidity, Science 207:777.PubMedCrossRefGoogle Scholar
  75. Tsukagoshi, N., and Fox, C. F., 1973, Transport system assembly and the mobility of membrane lipids in Escherichia coli, Biochemistry 12:2823.Google Scholar
  76. van Deenen, L. L. M., 1965, Phospholipids and biomembranes, Prog. Chem. Fats Other Lipids 8:1.CrossRefGoogle Scholar
  77. Vandenhoff, G., Gunstone, F. D., Barve, J., and Lands, W. E. M., 1975, Inhibition of growth of microbial mutants by trans-octadecenoates, J. Biol. Chem. 250:8720.PubMedGoogle Scholar
  78. Wilson, G., and Fox, C. F., 1971, Biogenesis of microbial transport systems: Evidence for coupled incorporation of newly synthesized lipids and proteins into membranes, J. Mol. Biol. 55:49.PubMedCrossRefGoogle Scholar
  79. Wilson, G., Rose, S. P., and Fox, C. F., 1970, The effect of membrane lipid unsaturation on glycoside transport, Biochem. Biophys. Res. Commun. 38:617.PubMedCrossRefGoogle Scholar
  80. Zalkin, H., Law, J. H., and Goldfine, H., 1963, Enzymatic synthesis of cyclopropane fatty acids catalyzed by bacterial extracts, J. Biol. Chem. 238:1242.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William E. M. Lands
    • 1
  • Frank S. Davis
    • 1
  1. 1.Department of Biological ChemistryUniversity of IllinoisChicagoUSA

Personalised recommendations