Control of Membrane Fluidity in Fusarium

  • R. W. Miller
  • L. R. Barran
Part of the Biomembranes book series (B, volume 12)


Despite extensive documentation of the large and varied lipid content of the eukaryotic fungi, relatively little information has been developed on the control of lipid fluidity as it relates to maintenance of the structure and function of fungal membrane components. Fungi imperfecti of the genus Fusarium have been the subject of several investigations aimed at determining the identity and amount of the major lipid classes which occur under various sets of growth conditions (Bhatia et al., 1973; Barran et al., 1976; Bhatia and Arneja, 1978). Many potentially important plant pathogens represent races of species of this genus and hence the effects of environmental parameters on membrane fluidity and function, especially as they relate to vegetative growth, metabolism, and sporulation, may take on added practical significance. Investigation of the structure of cytoplasmic membranes and endoplasmic reticular membranes by freeze-fracture electron microscopic techniques (Miller, 1980b) has shown that Fusarium cellular membranes fit the fluid mosaic model which is the accepted norm for most eukaryotic cells. Intrinsic membrane proteins appear as particles on the fracture faces of the fractured membranes.


Membrane Fluidity Fusarium Oxysporum Fusarium Species Spin Probe Desaturase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, L. R., and Martin, CE., 1980, Regulation of membrane fluidity in Neurospora— Induction of a fatty acid desaturase, J. Cell Biol. 87:A210.Google Scholar
  2. Addink, A. D. F., 1980, Activity of membrane-bound enzymes of the respiratory chain during adaptation of fish to temperature changes in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 99–103, Humana Press, Clifton, N.J.Google Scholar
  3. Barran, L. R., Miller, R. W., and de la Roche, I. A., 1976, Temperature-induced alterations in phospholipids of Fusarium oxysporum f. sp. lycopersici, Can. J. Microbiol. 22:557.PubMedCrossRefGoogle Scholar
  4. Barran, L. R., and de la Roche, I. A., 1979, Effect of temperature in phospholipid composition of mid-log hyphal cells of Fusarium oxysporum, Trans. Br. Mycol. Soc. 73:166.CrossRefGoogle Scholar
  5. Bhatia, I. S., and Arneja, J. S., 1978, Lipid metabolism in Fusarium oxysporum, J. Sci. Food Agric. 29:619.PubMedCrossRefGoogle Scholar
  6. Bhatia, I. S., Arneja, J. S., Raheju, R. K., and Sukhija, P. S., 1973, Lipid constituents of Fusarium spp., Indian J. Microbiol. 13:97.Google Scholar
  7. Bremer, J., and Greenberg, D. M., 1960, Methyl transferring enzyme system of microsomes in the biosynthesis of lecthicin (phosphatidylcholine), Biochim. Biophys. Acta 46:205.CrossRefGoogle Scholar
  8. Cannon, B., Polnaszek, C. F., Butler, K. W., Eriksson, L. E. G., and Smith, I. C. P., 1975, The fluidity and organization of mitochondrial membrane lipids of the brown adipose tissue of cold adapted rats and hamsters as determined by nitroxide spin probes, Arch. Biochem. Biophys. 167:505.PubMedCrossRefGoogle Scholar
  9. Chapman, D., Gomez-Fernandez, J. C, and Goni, F. M., 1979, Intrinsic protein-lipid interactions, FEBS Lett. 98:211.PubMedCrossRefGoogle Scholar
  10. Choy, P. C, and Vance, D. E., 1978, Lipid requirements for activation of CTP phosphocholine cytidyl transferase from rat liver, J. Biol. Chem. 253:5163.PubMedGoogle Scholar
  11. Fulco, A. J., and Fujii, D. K., 1980, Adaptive regulation of membrane lipid biosynthesis in bacilli by environmental temperature, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 77–98, Humana Press, Clifton, N.J.Google Scholar
  12. Hirata, F., Viveros, O. H., Diliberto, E. J., Jr., and Axelrod, J., 1978, Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine, Proc. Natl. Acad. Sci. USA 75:1718.PubMedCrossRefGoogle Scholar
  13. Kennedy, E. P., and Weiss, S. B., 1956, The function of cytidine coenzymes in the biosynthesis of phospholipids, J. Biol. Chem. 222:193.PubMedGoogle Scholar
  14. Madhosingh, C, 1977, Sterol and fatty acid metabolism in Fusarium oxysporum, Agric. Biol. Chem. 41:1233.CrossRefGoogle Scholar
  15. Madhosingh, C, and Orr, W., 1981, Sterol ester hydrolase in Fusarium oxysporum, Lipids 16:125.PubMedCrossRefGoogle Scholar
  16. Madhosingh, C., Lepage, M., and Migicovsky, B. B., 1972, The effect of glycerol and a rat liver extract (ICS) on sterol synthesis in Fusarium oxysporum, Can. J. Microbiol. 18:1679.PubMedCrossRefGoogle Scholar
  17. Madhosingh, C., Starratt, A. N., and Migicovsky, B. B., 1976, Purification and properties of a mitochondrial lipoprotein inhibitor of sterol synthesis, Agric. Biol. Chem. 40:883.CrossRefGoogle Scholar
  18. Miller, R. W., 1976, A spin label study of membrane alterations during conversion of Fusarium sulphureum macroconidia to chlamydospores, Spectrosc. Lett. 12:895.CrossRefGoogle Scholar
  19. Miller, R. W., 1978, Osmotically induced removal of water from fungal cells as determined by a spin probe technique, Plant Physiol. 62:741.PubMedCrossRefGoogle Scholar
  20. Miller, R. W., 1980a, Homeostatic control of membrane lipid fluidity in Fusarium, in: Membrane Fluidity: Biochemical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 327–348, Humana Press, Clifton, N.J.Google Scholar
  21. Miller, R. W., 1980b, Temperature-induced physical changes in fungal plasma membranes, Can. J. Biochem. 58:1138.PubMedGoogle Scholar
  22. Miller, R. W., and Barran, L. R., 1977, The effect of ionic surface active agents on macroconidial plasma membrane of Fusarium sulphureum, Can. J. Microbiol. 23:1373.PubMedCrossRefGoogle Scholar
  23. Miller, R. W., and de la Roche, I. A., 1976, Properties of spin labelled membranes of Fusarium oxysporum f. sp. lycopersici, Biochim. Biophys. Acta 443:64.PubMedCrossRefGoogle Scholar
  24. Nes, W. R., Sekula, B. C., Nes, D. W., and Adler, J. H., 1978, The functional importance of structural features of ergosterol in yeast, J. Biol. Chem. 253:6218.PubMedGoogle Scholar
  25. Nozawa, Y., 1980, Modification of lipid composition and membrane fluidity, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 399–418, Humana Press, Clifton, N.J.Google Scholar
  26. Oehlshlager, A. C, and Laks, P., 1980, Nitroxide spin-probe study of amphotericin B-ergosterol interaction in egg phosphatidylcholine multilayers, Can. J. Biochem. 58:978.CrossRefGoogle Scholar
  27. Pugh, E. L., and Kates, M., 1975, Characterization of a membrane-bound phospholipid desaturase system in Candida lipolytica, Biochim. Biophys. Acta 380:442.PubMedGoogle Scholar
  28. Scarborough, J. A., and Nyc, J. F., 1967, Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa, J. Biol. Chem. 242:238.PubMedGoogle Scholar
  29. Smith, J. D., and Law, J. H., 1970, Phosphatidylcholine biosynthesis in Tetrahymena pyriformis, Biochim. Biophys. Acta 202:141.PubMedGoogle Scholar
  30. Starr, P. R., and Parks, L. W., 1962, Effect of temperature on sterol metabolism in yeast, J. Cell. Comp. Physiol. 59:107.PubMedCrossRefGoogle Scholar
  31. Suda, T., Maeda, N., and Shiga, T., 1980, Effect of cholesterol on human erythrocyte membrane, J. Biochem.(Tokyo) 87:1703.Google Scholar
  32. Tsukagoshi, N., and Fox, C. F., 1973, Transport system assembly and the mobility of membrane lipids in E. coli, Biochemistry 12:2822.PubMedCrossRefGoogle Scholar
  33. Waechter, C. J., and Lester, R. L., 1973, Differential regulation of N-methyltransferases responsible for phosphatidylcholine synthesis in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 158:401.PubMedCrossRefGoogle Scholar
  34. Weete, J. D., 1974, Fungal lipid biochemistry, in: Monographs in Lipid Research, Vol. I (D. Kritchersky, ed.), Plenum Press, New York.Google Scholar
  35. Wilson, A. C, and Barran, L. R., 1980a, in: Membrane Fluidity: Biochemical Techniques and Cellular Regulation (M. Kates and Kuksis eds.), pp. 297–305, Humana Press, Clifton, N.J.Google Scholar
  36. Wilson, A. C, and Barran, L. R., 1980b, The methylating system for 3-sn-phosphatidylcholine biosynthesis in Fusarium oxysporum, Can. J. Microbiol. 26:774.CrossRefGoogle Scholar
  37. Wilson, A. C, and Miller, R. W., 1978, Growth temperature-dependent stearoyl coenzyme-A desaturase activity of Fusarium oxysporum microsomes, Can. J. Biochem. 56:1109.PubMedCrossRefGoogle Scholar
  38. Wilson, A. C., Adams, W. C, and Miller, R. W., 1979, Lipid involvement in oleoyl CoA desaturase activity of Fusarium oxysporum microsomes, Can. J. Biochem. 58:97.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. W. Miller
    • 1
  • L. R. Barran
    • 1
  1. 1.Research BranchAgriculture CanadaOttawaCanada

Personalised recommendations