Advertisement

The Regulation of Membrane Fluidity in Tetrahymena

  • Guy A. ThompsonJr.
  • Yoshinori Nozawa
Part of the Biomembranes book series (B, volume 12)

Abstract

To those seeking “relevance,” Tetrahymena must at first seem a most improbable subject for modern scientific research. After gaining brief recognition as an object of wonderment to the early microscopists, Tetrahymena and its ciliate kin sank back into the obscurity of a biological universe populated by countless other creatures of equally little appafent benefit to man. Today, after the passage of three centuries, one can still find little direct practical value for this group of protozoa. Yet Tetrahymena has in recent years gained ascendancy over its relatives in the scientific literature, and the genus is now the subject of several books (e.g., Hill, 1972; Elliott, 1973) and hundreds of technical reports.

Keywords

Membrane Fluidity Fatty Acid Desaturase Temperature Acclimation Polar Head Group Microsomal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. D., 1978, Membranes of ciliates: Ultrastructure, biochemistry and fusion, in: Membrane Fusion (G. Poste and G. L. Nicholson, eds.), pp. 657–763, North-Holland, Amsterdam.Google Scholar
  2. Anderson, R. L., Minton, K. W., Li, G. C, and Hahn, G. M., 1981, Temperature-induced homeoviscous adaptation of Chinese hamster ovary cells, Biochim. Biophys. Acta 641:334.PubMedCrossRefGoogle Scholar
  3. De Bony, J., and Dennis, E. A., 1981, Magnetic non-equivalence of the two fatty acid chains in phospholipids of small unilamellar vesicles and mixed micelles, Biochemistry 20:5256.PubMedCrossRefGoogle Scholar
  4. Dickens, B. F., and Thompson, G. A., Jr., 1980, Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes from Tetrahymena, Biochemistry 19:5029.PubMedCrossRefGoogle Scholar
  5. Dickens, B. F., and Thompson, G. A., Jr., 1981, Rapid membrane response during low temperature acclimation: Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes, Biochim. Biophys. Acta 644:211.PubMedCrossRefGoogle Scholar
  6. Dickens, B. F., and Thompson, G. A., Jr., 1982, Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature, Biochemistry 21:3604.PubMedCrossRefGoogle Scholar
  7. Dickens, B. F., Martin, C. E., King, G. P., Turner, J. S., and Thompson, G. A., Jr., 1980, Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes, Biochim. Biophys. Acta 598:217.PubMedCrossRefGoogle Scholar
  8. Elliott, A. M. (ed.), 1973, Biology of Tetrahymena, Dowden, Hutchinson & Ross, Stroudsburg.Google Scholar
  9. Elliott, A. M., and Kennedy, J. R., 1973, Morphology of Tetrahymena, in: Biology of Tetrahymena (A. M. Elliott, ed.), pp. 57–87, Dowden, Hutchinson & Ross, Stroudsburg.Google Scholar
  10. Ferguson, K. A., Davis, F. M., Conner, R. L., Landrey, J. R., and Mallory, F. B., 1975, Effect of sterol replacement in vivo on the fatty acid composition of Tetrahymena, J. Biol. Chem. 250:6998.PubMedGoogle Scholar
  11. Ferguson, K. A., Hui, S. W., Stewart, T. P., and Yeagle, P. L., 1982, Phase behavior of the major lipids of Tetrahymena ciliary membranes, Biochim. Biophys. Acta 684:179.PubMedCrossRefGoogle Scholar
  12. Fukushima, H., Martin, C. E., Iida, H., Kitajima, Y., Thompson, G. A., Jr., and Nozawa, Y., 1976a, Changes in membrane lipid composition during temperature adaptation by a ther-motolerant strain of Tetrahymena pyriformis, Biochim. Biophys. Acta 431:165.PubMedGoogle Scholar
  13. Fukushima, H., Watanabe, T., and Nozawa, Y., 1976b, Studies on Tetrahymena membranes: In vivo manipulation of membrane lipids by 1-O-hexadecyl glycerol feeding in Tetrahymena pyriformis, Biochim. Biophys. Acta 436:249.PubMedCrossRefGoogle Scholar
  14. Fulco, A. J., 1972, The biosynthesis of unsaturated fatty acids by bacilli. IV. Temperature-mediated control mechanisms, J. Biol. Chem. 247:3511.PubMedGoogle Scholar
  15. Harris, P., and James, A. T., 1969, The effect of low temperatures on fatty acid biosynthesis in plants, Biochem. J. 112:325.PubMedGoogle Scholar
  16. Hill, D. L., 1972, The Biochemistry and Physiology of Tetrahymena, Academic Press, New York.Google Scholar
  17. Hill, R. J., 1980, Modulation of membrane fluidity in a fatty acid auxotrophe of Tetrahymena thermophila, Biochim. Biophys. Acta 595:140.PubMedCrossRefGoogle Scholar
  18. Iida, H., Maeda, T., Ohki, K., Nozawa, Y., and Ohnishi, S., 1978, Transfer of phosphatidyl-choline between different membranes in Tetrahymena as studied by spin labeling, Biochim. Biophys. Acta 508:55.PubMedCrossRefGoogle Scholar
  19. Israelachvili, J. N., Marčelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys. 13:121.PubMedCrossRefGoogle Scholar
  20. Kameyama, Y., Yoshioka, S., and Nozawa, Y., 1980, The occurrence of direct desaturation of phospholipid acyl chain in Tetrahymena pyriformis: Thermal adaptation of membrane phospholipid, Biochim. Biophys. Acta 618:214.PubMedGoogle Scholar
  21. Kasai, R., Kitajima, Y., Martin, C. E., Nozawa, Y., Skriver, L., and Thompson, G. A., Jr., 1976, Molecular control of membrane properties during temperature acclimation: Membrane fluidity regulation of fatty acid desaturase action?, Biochemistry 15:5228.PubMedCrossRefGoogle Scholar
  22. Kasai, R., Sekiya, T., Okano, Y., Nagao, S., Ohki, K., Ohnishi, S., and Nozawa, Y., 1977, Adaptation of membrane lipids to temperature changes in Tetrahymena: Regulation of acyl chain composition of membrane phospholipid in ergosterol-replaced cells, Maku (Membrane) 2:301.Google Scholar
  23. Kasai, R., Watanabe, T., Fukushima, H., Iida, H., and Nozawa, Y., 1981, Adaptive modification of membrane lipids in Tetrahymena pyriformis during starvation: Alterations in phos-pholipid composition and positional distribution of fatty acyl chains, Biochim. Biophys. Acta 666:36.PubMedGoogle Scholar
  24. Kitajima, Y., and Thompson, G. A., Jr., 1977a, Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant: Electron microscope evidence, J. Cell Biol. 72:744.PubMedCrossRefGoogle Scholar
  25. Kitajima, Y., and Thompson, G. A., Jr., 1977b, Self-regulation of membrane fluidity: The effect of saturated normal and methoxy fatty acid supplementation on Tetrahymena membrane physical properties and lipid composition, Biochim. Biophys. Acta 468:73.PubMedCrossRefGoogle Scholar
  26. Martin, C. E., and Foyt, D. C, 1978, Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures, Biochemistry 17:3587.PubMedCrossRefGoogle Scholar
  27. Martin, C. E., and Thompson, G. A., Jr., 1978, Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation: Correlation with lipid compositional and ultrastructural changes, Biochemistry 17:3581.PubMedCrossRefGoogle Scholar
  28. Martin, C. E., Hiramitsu, K., Kitajima, Y., Nozawa, Y., Skriver, L., and Thompson, G. A., Jr., 1976, Molecular control of membrane properties during temperature acclimation: Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells, Biochemistry 15:5218.PubMedCrossRefGoogle Scholar
  29. Maruyama, H., Banno, Y., Watanabe, T., and Nozawa, Y., 1982, Studies on thermal adaptation in Tetrahymena membrane lipids: Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria, and microsomes, Biochim. Biophys. Acta 711:229.PubMedGoogle Scholar
  30. Mattox, S. M., and Thompson, G. A., Jr., 1980, The effects of high concentrations of sodium or calcium ions on the lipid composition and properties of Tetrahymena membranes, Biochim. Biophys. Acta 599:24.PubMedCrossRefGoogle Scholar
  31. Morré, D. J., and Ovtracht, L., 1977, Dynamics of the Golgi apparatus: Membrane differentiation and membrane flow, Int. Rev. Cytol. Suppl. 5:61.PubMedGoogle Scholar
  32. Nagao, S., Fukushima, H., and Nozawa, Y., 1978, Studies on Tetrahymena membranes: Substrates for desaturation of fatty acid chains in Tetrahymena pyriformis microsomes, Biochim. Biophys. Acta 530:165.PubMedGoogle Scholar
  33. Nandini-Kishore, S. G., Kitajima, Y., and Thompson, G. A., Jr., 1977, Membrane fluidizing effects of the general anesthetic methoxyflurane elicit an acclimation response in Tetrahymena, Biochim. Biophys. Acta 471:157.PubMedCrossRefGoogle Scholar
  34. Nandini-Kishore, S. G., Mattox, S. M., Martin, C. E., and Thompson, G. A., Jr., 1979, Membrane changes during growth of Tetrahymena in the presence of ethanol, Biochim. Biophys. Acta 551:315.PubMedGoogle Scholar
  35. Nanney, D. L., and McCoy, J. W., 1976, Characterization of the species of the Tetrahymena pyriformis complex, Trans. Am. Microsc. Soc. 95:664.PubMedCrossRefGoogle Scholar
  36. Nozawa, Y., and Kasai, R., 1978, Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1: Possible evidence for temperature-mediated induction of palmitoyl-CoA desaturase, Biochim. Biophys. Acta 529:54.PubMedGoogle Scholar
  37. Nozawa, Y., and Thompson, G. A., Jr., 1971a, Studies of membrane formation in Tetrahymena pyriformis. II. Isolation and lipid analysis of cell fractions, J. Cell Biol. 49:712.PubMedCrossRefGoogle Scholar
  38. Nozawa, Y., and Thompson, G. A., Jr., 1971b, Studies of membrane formation in Tetrahymena pyriformis. III. Lipid incorporation into various cellular membranes of logarithmic phase cultures, J. Cell Biol. 49:722.PubMedCrossRefGoogle Scholar
  39. Nozawa, Y., and Thompson, G. A., Jr., 1972, Studies of membrane formation in Tetrahymena pyriformis. V. Lipid incorporation into various cellular membranes of stationary phase cells, starving cells, and cells treated with metabolic inhibitors, Biochim. Biophys. Acta 282:93.PubMedCrossRefGoogle Scholar
  40. Nozawa, Y., Iida, H., Fukushima, H., Ohki, K., and Ohnishi, S., 1974, Studies on Tetrahymena membranes: Temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study, Biochim. Biophys. Acta 367:134.PubMedCrossRefGoogle Scholar
  41. Nozawa, Y., Fukushima, H., and Iida, H., 1975, Studies on Tetrahymena membranes: Modification of surface membrane lipids by replacement of tetrahymanol by exogenous ergosterol in Tetrahymena pyriformis, Biochim. Biophys. Acta 406:248.PubMedCrossRefGoogle Scholar
  42. Nozawa, Y., Kasai, R., and Sekiya, T., 1979, Modification of membrane lipids: Phenethyl alcohol-induced alteration of lipid composition in Tetrahymena membranes, Biochim. Biophys. Acta 552:38.PubMedCrossRefGoogle Scholar
  43. Nozawa, Y., Kasai, R., Kameyama, Y., and Ohki, K., 1980a, Age-dependent modifications in membrane lipids: Lipid composition, fluidity, and palmitoyl-CoA desaturase in Tetrahymena membranes, Biochim. Biophys. Acta 599:232.PubMedCrossRefGoogle Scholar
  44. Nozawa, Y., Kasai, R., and Sekiya, T., 1980b, Modifications of membrane lipid composition following the nutritional shift-up of starved cells: A comparison with membrane biogenesis in Tetrahymena, Biochim. Biophys. Acta 603:347.PubMedCrossRefGoogle Scholar
  45. Ohki, K., Kasai, R., and Nozawa, Y., 1979, Correlation between fluidity and fatty acid composition of phospholipid species in Tetrahymena pyriformis during temperature acclimation, Biochim. Biophys. Acta 558:273.PubMedCrossRefGoogle Scholar
  46. Ramesha, C. S., and Thompson, G. A., Jr., 1982, Changes in the lipid composition and physical properties of Tetrahymena ciliary membranes following low temperature acclimation, Biochemistry 21:3612.PubMedCrossRefGoogle Scholar
  47. Ramesha, C. S., Dickens, B. F., and Thompson, G. A., Jr., 1982, Phospholipid molecular species alterations in Tetrahymena ciliary membranes following low temperature acclimation: Variations on the microsomal theme, Biochemistry 21:3618.PubMedCrossRefGoogle Scholar
  48. Rebeille, F., Bligny, R., and Douce, R., 1980, Oxygen and temperature effects on the fatty acid composition of sycamore cells (Acer pseudoplatanus L.), in: Biogenesis and Function of Plant Lipids (P. Mazliak, P. Benveniste, C. Costes, and R. Douce, eds.), pp. 203–206, Elsevier, Amsterdam.Google Scholar
  49. Ronai, A., and Wunderlich, F., 1975, Membranes of Tetrahymena. IV. Isolation and characterization of temperature-responsive smooth and rough microsomal subfractions, J. Membr.Biol. 24:381.PubMedCrossRefGoogle Scholar
  50. Sandermann, H., Jr., 1978, Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta 515:209.PubMedGoogle Scholar
  51. Shimonaka, H., and Nozawa, Y., 1977, Subcellular distribution and thermally-induced transition of adenylate cyclase activity in thermotolerant Tetrahymena surface membranes, Cell Struct. Funct. 2:81.CrossRefGoogle Scholar
  52. Shimonaka, H., Fukushima, H., Kawai, K., Nagao, S., Okano, Y., and Nozawa, Y., 1978, Altered micro viscosity of in vivo lipid manipulated membranes in Tetrahymena pyriformis: A fluorescence study, Experientia 34:586.PubMedCrossRefGoogle Scholar
  53. Sinensky, M., 1974, Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipid in Escherichia coli, Proc. Natl. Acad. Sci. USA 71:522.PubMedCrossRefGoogle Scholar
  54. Skriver, L., and Thompson, G. A., Jr., 1976, Environmental effects on Tetrahymena membranes: Temperature induced changes in membrane fatty acid unsaturation are independent of the molecular oxygen concentration, Biochim. Biophys. Acta 431:180.PubMedGoogle Scholar
  55. Skriver, L., and Thompson, G. A., Jr., 1979, Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis, Biochim. Biophys. Acta 572:376.PubMedGoogle Scholar
  56. Thompson, G. A., Jr., 1983, Mechanisms of homeoviscous adaptation in membranes, in: Cellular Acclimatisation to Environmental Change (A. R. Cossins and P. Shelterline, eds.), pp. 33–53, Cambridge University Press, Cambridge.Google Scholar
  57. Thompson, G. A., Jr., Bambery, R. J., and Nozawa, Y., 1971, Further studies of the lipid composition and biochemical properties of Tetrahymena pyriformis membrane systems, Biochemistry 10:4441.PubMedCrossRefGoogle Scholar
  58. Thompson, G. A., Jr., Bambery, R. J., and Nozawa, Y., 1972, Environmentally produced alterations of the tetrahymanol: phospholipid ratio in Tetrahymena pyriformis membranes, Biochim. Biophys. Acta 260:630.PubMedGoogle Scholar
  59. Umeki, S., Fukushima, H., Watanabe, T., and Nozawa, Y., 1982, Thermal acclimation mechanisms in Tetrahymena pyriformis: Effects of decreased temperature on microsomal electron transport, Biochem. Int. 4:101.Google Scholar
  60. Watanabe, T., Fukushima, H., Kasai, R., and Nozawa, Y., 1979, Studies on temperature adaptation in Tetrahymena: Positional distribution of fatty acids and species analysis of phos-phatidylethanolamine from Tetrahymena pyriformis grown at different temperatures, Biochim. Biophys. Acta 575:365.PubMedGoogle Scholar
  61. Watanabe, T., Fukushima, H., and Nozawa, Y., 1980, Studies on thermal adaptation in Tetrahymena membrane lipids: Positional distribution of fatty acid in diacyl-and alkyl-acyl-phosphatidylcholines and 2-aminoethylphosphonolipids from cells grown at different temperatures, Biochim. Biophys. Acta 620:133.PubMedGoogle Scholar
  62. Wickner, W., 1980, Assembly of proteins into membranes, Science 210:861.PubMedCrossRefGoogle Scholar
  63. Williams, N. E., Subbaiah, P. V., and Thompson, G. A., Jr., 1980, Studies of membrane formation in Tetrahymena: The identification of membrane proteins and turnover rates in non-growing cells, J. Biol. Chem. 255:296.PubMedGoogle Scholar
  64. Wodtke, E., 1978, Lipid adaptation in liver mitochondrial membranes of carp acclimated to different environmental temperatures: Phospholipid composition, fatty acid pattern, and cholesterol content, Biochim. Biophys. Acta 529:280.PubMedGoogle Scholar
  65. Wunderlich, F., and Ronai, A., 1975, Adaptive lowering of the lipid clustering temperature within Tetrahymena membranes, FEBS Lett. 55:237.PubMedCrossRefGoogle Scholar
  66. Wunderlich, F., Ronai, A., Speth, V., Seelig, J., and Blume, A., 1975, Thermotropic lipid clustering in Tetrahymena membranes, Biochemistry 14:3730.PubMedCrossRefGoogle Scholar
  67. Wunderlich, F., Kreutz, W., Mahler, P., Ronai, A., and Heppeler, G., 1978, Thermotropic fluid → ordered “discontinuous” phase separation in microsomal lipids of Tetrahymena: An X-ray diffraction study, Biochemistry 17:2005.PubMedCrossRefGoogle Scholar
  68. Yamaguchi, T., Ohki, K., Maruyama, H., and Nozawa, Y., 1981, Thermal adaptation of Tetrahymena membranes with special reference to mitochondria: Role of cardiolipin in fluidity of mitochondrial membranes, Biochim. Biophys. Acta 649:385.CrossRefGoogle Scholar
  69. Zilversmit, D. B., and Hughes, M. E., 1976, Phospholipid exchange between membranes, Methods Membr. Biol. 7:211.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Guy A. ThompsonJr.
    • 1
  • Yoshinori Nozawa
    • 2
  1. 1.Department of BotanyThe University of TexasAustinUSA
  2. 2.Department of BiochemistryGifu University School of MedicineGifuJapan

Personalised recommendations