Skip to main content

The Control of Membrane Fluidity in Plasmalogen-Containing Anaerobic Bacteria

  • Chapter
Membrane Fluidity

Part of the book series: Biomembranes ((B,volume 12))

  • 292 Accesses

Abstract

Studies on the control of membrane fluidity in living organisms have largely concentrated on the participation of diacylphospholipids and their acyl chains in these processes. The effects of additions of sterols to diacylphospholipids have also been intensively investigated. In addition to the fact that diacylphosphatides are the predominant lipid class in many biological membranes, physical studies on these lipids have been facilitated by the relative ease of chemical synthesis of pure diacylphospholipids with homogeneous acyl chains. Added to this consideration, many of the now classical studies on the biological regulation of membrane fluidity were done on mycoplasmas, acholeplasmas, and Escherichia coli, all of which contain diacyl lipids with or without sterols, as their predominant lipid types. As many of the chapters in this volume will undoubtedly attest, considerable understanding of the phase behavior of these lipids and the membranes that contain them has been achieved. In addition, progress is being made on the ther-motropic phase behavior of other major lipid classes such as sphingolipids (see Ruocco et al., 1981, for references). Ether lipids in the form of plas-malogens (1-O-alk-l′-enyl-2-acyl phosphoglycerides) and 1-O-alkyl-2-acyl phosphoglycerides are other major lipid classes in biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, P. G., and Gunstone, F. D., 1975, Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins: Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine, J. Biol. Chem. 250:4470.

    PubMed  CAS  Google Scholar 

  • Baumann, N. A., Hagen, P.-O., and Goldfine, H., 1965, Phospholipids of Clostridium butyricum: Studies on plasmalogen composition and biosynthesis, J. Biol. Chem. 240:1559.

    PubMed  CAS  Google Scholar 

  • Boggs, J. M., Stamp, D., Hughes, D. W., and Deber, C. M., 1981, Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids, Biochemistry 20:5728.

    Article  PubMed  CAS  Google Scholar 

  • Broquist, H. P., and Snell, E. E., 1951, Biotin and bacterial growth. I. Relation to aspartate, oleate, and carbon dioxide, J. Biol. Chem. 188:431.

    PubMed  CAS  Google Scholar 

  • Bunow, M. R., 1979, Two gel states of cerebrosides: Calorimetric and Raman spectroscopic evidence, Biochim. Biophys. Acta 574:542.

    PubMed  CAS  Google Scholar 

  • Clarke, N. G., Hazlewood, G. P., and Dawson, R. M. C, 1980, Structure of diabolic acid-containing phospholipids isolated from Butyrivibrio sp., Biochem. J. 191:561.

    PubMed  CAS  Google Scholar 

  • Cullis, P. R., and de Kruijff, B., 1978, The polymorphic phase behaviour of phosphatidyle-thanolamines of natural and synthetic origin: A 31P NMR study, Biochim. Biophys. Acta 513:31.

    Article  PubMed  CAS  Google Scholar 

  • Cummins, C. J., and Johnson, J. L., 1971, Taxonomy of the clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia, J. Gen. Microbiol. 67:33.

    Google Scholar 

  • Davis, M.-T.B., and Silbert, D. F., 1974, Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12, Biochim. Biophys. Acta 373:224.

    Article  PubMed  CAS  Google Scholar 

  • Elsden, S. R., Hilton, M. G., Parsley, K. R., and Self, R., 1980, The lipid fatty acids of proteolytic clostridia, J. Gen. Microbiol. 118:115.

    CAS  Google Scholar 

  • Esfahani, M., Barnes, E. M., Jr., and Wakil, S. J., 1969, Control of fatty acid composition in phospholipids of Escherichia coli: Response to fatty acid supplements in a fatty acid auxotroph, Proc. Natl. Acad. Sci. USA 64:1057.

    Article  PubMed  CAS  Google Scholar 

  • Estep, T. N., Calhoun, W. I., Barenholz, Y., Biltonen, R. L., Shipley, G. G., and Thompson, T. E., 1980, Evidence for metastability in stearoylsphingomyelin bilayers, Biochemistry 19:20.

    Article  PubMed  CAS  Google Scholar 

  • Fritsche, D., and Thelen, A., 1973, Die Abgrenzung der Genera Bacteriodes und Sphaerophorus auf Grund der Struktur ihrer komplexen Lipoide, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 223:356.

    CAS  Google Scholar 

  • Gigg, R., 1972, The chemical synthesis of plasmalogens, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 87–108, Academic Press, New York.

    Google Scholar 

  • Goldfine, H., 1979, Why bacteria may not tightly regulate the synthesis of fatty acids in response to exogenous fatty acids, in: Microbiology 1979 (D. Schlessinger, ed.), pp. 14–16, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Goldfine, H., and Hagen, P.-O., 1972, Bacterial plasmalogens, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 329–350, Academic Press, New York.

    Google Scholar 

  • Goldfine, H., and Johnston, N. C, 1980, Regulation of membrane fluidity in anaerobic bacteria, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 365–380, Humana Press, Clifton, N.J.

    Google Scholar 

  • Goldfine, H., Khuller, G. K., Borie, R. P., Silverman, B., Selick, H., Johnston, N. C., Vanderkooi, J. M., and Horwitz, A. F., 1977, Effects of growth temperature and supplementation with exogenous fatty acids on some physical properties of Clostridium butyricum phospholipids, Biochim. Biophys. Acta 488:341.

    PubMed  CAS  Google Scholar 

  • Goldfine, H., Johnston, N. C, and Phillips, M. C, 1981, Phase behavior of ether lipids from Clostridium butyricum, Biochemistry 20:2908.

    Article  PubMed  CAS  Google Scholar 

  • Goldfine, H., Johnston, N. C, and Bishop, D. G., 1982, Ether phospholipid asymmetry in Clostridium butyricum, Biochem. Biophys. Res. Commun. 108:1502.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, P.-O., 1974, Lipids of Sphaerophorus ridiculosis: Plasmalogen composition, J. Bacteriol. 119:643.

    PubMed  CAS  Google Scholar 

  • Hauser, H., and Phillips, M. C, 1979, Interactions of the polar groups of phospholipid bilayer membranes, Prog. Surf. Membr. Sci. 13:297.

    CAS  Google Scholar 

  • Hauser, H., Hazlewood, G. P., and Dawson, R. M. C, 1979, Membrane fluidity of a fatty acid auxotroph grown with palmitic acid, Nature (London) 279:536.

    Article  CAS  Google Scholar 

  • Hazlewood, G. P., and Dawson, R. M. C, 1975, Isolation and properties of a phospholipid-hydrolyzing bacterium from ovine rumen fluid, J. Gen. Microbiol. 89:163.

    Google Scholar 

  • Hazlewood, G. P., and Dawson, R. M. C, 1979, Characteristics of a lipolytic and fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen, J. Gen. Microbiol. 112:15.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., Clarke, N. G., and Dawson, R. M. C., 1980a, Complex lipids of a lipolytic and general-fatty-acid-requiring Butyrivibrio sp. isolated from the ovine rumen, Biochem. J. 191:555.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., Dawson, R. M. C, and Hauser, H., 1980b, The question of membrane fluidity in an anaerobic general fatty acid auxotroph, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 191–202, Humana Press, Clifton, N.J.

    Google Scholar 

  • Horrocks, L. A., 1972, Content, composition, and metabolism of mammalian and avian lipids that contain ether groups, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 177–212, Academic Press, New York.

    Google Scholar 

  • Israelachvili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys. 13:121.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. B., and Sturtevant, J. M., 1977, Studies of the lipid phase transitions of Escherichia coli by high sensitivity differential scanning colorimetry, J. Biol. Chem. 252:4749.

    PubMed  CAS  Google Scholar 

  • Jantzen, F., and Hofstad, T., 1981, Fatty acids of Fusobacterium species: Taxonomic implications, J. Gen. Microbiol. 123:163.

    PubMed  CAS  Google Scholar 

  • Johnston, N. C, and Goldfine, H., 1982, Effects of growth temperature on fatty acid and alk-1-enyl group compositions of Veillonella parvula and Megasphaera elsdenii phospholipids, J. Bacteriol. 149:567.

    PubMed  CAS  Google Scholar 

  • Kamio, Y., and Takahashi, H., 1980, Isolation and characterization of outer and inner membranes of Selenomonas rwninantium: Lipid composition, J. Bacteriol. 141:888.

    PubMed  CAS  Google Scholar 

  • Kamio, Y., Kanegasaki, S., and Takahashi, H., 1970, Fatty acid and aldehyde compositions in phospholipids of Selenomonas ruminantium with reference to growth conditions, J. Gen. Appl. Microbiol. 16:29.

    Article  CAS  Google Scholar 

  • Kepler, C. R., Tucker, W. P., and Tove, S. B., 1970, Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate Δ12-cis, Δ11 -trans isomerase from Butyrivibrio fibrisolvens, J. Biol. Chem. 245:3612.

    PubMed  CAS  Google Scholar 

  • Khuller, G. K., and Goldfine, H., 1974, Phospholipids of Clostridium butyricum. V. Effects of growth temperature on fatty acid, alk-1-enyl ether group, and phospholipid composition, J. Lipid Res. 15:500.

    PubMed  CAS  Google Scholar 

  • Khuller, G. K., and Goldfine, H., 1975, Replacement of acyl and alk-1-enyl groups in Clostridium butyricum phospholipids by exogenous fatty acids, Biochemistry 14:3642.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R. A., Hazlewood, G. P., and Dawson, R. M. C, 1979, A new series of long-chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp., Biochem. J. 183:691.

    PubMed  CAS  Google Scholar 

  • Langworthy, T. A., Mayberry, W. R., Smith, P. F., and Robinson, I. M., 1975, Plasmalogen composition of Anaeroplasma, J. Bacteriol. 122:785.

    PubMed  CAS  Google Scholar 

  • Lee, T.-C, and Fitzgerald, V., 1980, Phase transitions of alkyl ether analogs of phosphatidyl-choline, Biochim. Biophys. Acta 598:189.

    Article  PubMed  CAS  Google Scholar 

  • Livermore, B. P., and Johnson, R. C, 1974, Lipids of the Spirochaetales: Comparison of the lipids of several members of the genera Spirochaeta, Treponema, and Leptospira, J. Bacteriol. 120:1268.

    PubMed  CAS  Google Scholar 

  • Makula, R. A., and Finnerty, W. R., 1974, Phospholipid composition of Desulfovibrio species, J. Bacteriol. 120:1279.

    PubMed  CAS  Google Scholar 

  • Makula, R. A., and Finnerty, W. R., 1975, Isolation and characterization of an ornithine-containing lipid from Desulfovibrio gigas, J. Bacteriol. 123:523.

    PubMed  CAS  Google Scholar 

  • Matsumoto, M., Tamiya, K., and Koizumi, K., 1971, Studies on neutral lipids and a new type of aldehydogenic ethanolamine phospholipid in Clostridium butyricum, J. Biochem. (Tokyo) 69:617.

    CAS  Google Scholar 

  • Matthews, H. M., Yang, T.-K., and Jenkin, H. M., 1979, Unique lipid composition of Treponema pallidum (Nichols virulent strain), Infect. Immun. 24:713.

    PubMed  CAS  Google Scholar 

  • Meyer, H., and Meyer, F., 1971, Lipid metabolism in the parasite and free-living spirochetes Treponema pallidum (Reiter) and Treponema zuelzerae, Biochim. Biophys. Acta 231:93.

    PubMed  CAS  Google Scholar 

  • Miyagawa, E., Azuma, R., and Suto, T., 1978, Distribution of sphingolipids in Bacteroides species, J. Gen. Appl. Microbiol. 24:341.

    Article  CAS  Google Scholar 

  • Moss, C. W., and Lewis, V. J., 1967, Characterization of clostridia by gas chromatography. I. Differentiation of species by cellular fatty acids, Appl. Microbiol. 15:390.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, M. C., Hauser, H., and Paltauf, F., 1972, The inter-and intra-molecular mixing of hydrocarbon chains in lecithin/water systems, Chem. Phys. Lipids 8:127.

    Article  PubMed  CAS  Google Scholar 

  • Rand, R. P., Tinker, D. O., and Fast, P. G., 1971, Polymorphism of phosphatidylethanolamines from two natural sources, Chem. Phys. Lipids 6:333.

    Article  PubMed  CAS  Google Scholar 

  • Reiss-Husson, F., 1967, Structure des phases liquide-crystallines de differents phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’eau, J. Mol. Biol. 25:363.

    Article  PubMed  CAS  Google Scholar 

  • Roots, B. I., 1968, Phospholipids of goldfish (Carassius auratus L.) brain: The influence of environmental temperature, Comp. Biochem. Physiol. 25:457.

    Article  PubMed  CAS  Google Scholar 

  • Roots, B. I., and Johnston, R. V., 1968, Plasmalogens of the nervous system and environmental temperature, Comp. Biochem. Physiol. 26:553.

    Article  PubMed  CAS  Google Scholar 

  • Ruocco, M. J., Atkinson, D., Small, D. M., Skarjune, R. P., Oldfield, E., and Shipley, G. G., 1981, X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoyl-galactosyl-sphingosine (cerebroside), Biochemistry 20:5957.

    Article  PubMed  CAS  Google Scholar 

  • Silber, P., Borie, R. P., and Goldfine, H., 1980, The enzymes of phospholipid synthesis in Clostridium butyricum, J. Lipid Res. 21:1022.

    PubMed  CAS  Google Scholar 

  • Silber, P., Borie, R. P., Mikowski, E. J., and Goldfine, H., 1981, Phospholipid biosynthesis in some anaerobic bacteria, J. Bacteriol. 147:57.

    PubMed  CAS  Google Scholar 

  • Silvius, J. R., and McElhaney, R. N., 1979, Effects of phospholipid acyl chain structure on thermotropic phase properties. II. Phosphatidylcholines with unsaturated or cyclopropane chains, Chem. Phys. Lipids 25:125.

    Article  CAS  Google Scholar 

  • Thompson, G. A., Jr., 1972, Ether-linked lipids in molluscs, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 313–320, Academic Press, New York.

    Google Scholar 

  • van Dijck, P. W. M., de Kruijff, B., van Deenen, L. L. M., de Gier, J., and Demel, R. A., 1976, The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers, Biochem. Biophys. Acta 455:576.

    Article  PubMed  Google Scholar 

  • van Golde, L. M. G., Prins, R. A., Franklin-Klein, W., and Akkermans-Kruyswijk, J., 1973, Phosphatidylserine and its plasmalogen analogue as major lipid constituents in Megasphaera elsdenii, Biochim. Biophys. Acta 326:314.

    PubMed  Google Scholar 

  • van Golde, L. M. G., Akkermans-Kruyswijk, J., Franklin-Klein, W., Lankhorst, A., and Prins, R. A., 1975, Accumulation of phosphatidylserine in strictly anaerobic lactate fermenting bacteria, FEBS Lett. 53:57.

    Article  PubMed  Google Scholar 

  • Vaughan, D. J., and Keough, K. M., 1974, Changes in phase transitions of phosphatidyle-thanolamine and phosphatidylcholine water dispersions induced by small modifications in the headgroup and backbone regions, FEBS Lett. 47:158.

    Article  PubMed  CAS  Google Scholar 

  • Verkley, A. J., Ververgaert, P. H. J. T., Prins, R. A., and van Golde, L. M. G., 1975, Lipid-phase transitions of the strictly anaerobic bacteria Veillonella parvula and Anaerovibrio lipolytica, J. Bacteriol. 124:1522.

    PubMed  CAS  Google Scholar 

  • Wegner, G. H., and Foster, E. M., 1963, Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes, J. Bacteriol. 85:53.

    PubMed  CAS  Google Scholar 

  • White, D. C., Tucker, A. N., and Sweeley, C. C., 1969, Characterization of the iso-branched sphinganines from the ceramide phospholipids of Bacteroides melaninogenicus, Biochim. Biophys. Acta 187:527.

    PubMed  CAS  Google Scholar 

  • Wieslander, υ., Christiansson, A., Rilfors, L., Khan, A., Johansson, L. B.-A., and Lindblom, G., 1981, Lipid phase structure governs the regulation of lipid composition in membranes of Acholeplasma laidlawii, FEBS Lett. 124:273.

    Article  CAS  Google Scholar 

  • Yang, R. D., Patel, K. M., Pownall, H. J., Knapp, R. D., Sklar, L. A., Crawford, R. B., and Morrisett, J. D., 1979, Biophysical properties of a major membrane phospholipid, dielaidoylphosphatidylethanolamine, found in an Escherichia coli fatty acid auxotroph, J. Biol. Chem. 254:8256.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Goldfine, H. (1984). The Control of Membrane Fluidity in Plasmalogen-Containing Anaerobic Bacteria. In: Kates, M., Manson, L.A. (eds) Membrane Fluidity. Biomembranes, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4667-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4667-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4669-2

  • Online ISBN: 978-1-4684-4667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics