The Control of Membrane Fluidity in Plasmalogen-Containing Anaerobic Bacteria

  • Howard Goldfine
Part of the Biomembranes book series (B, volume 12)

Abstract

Studies on the control of membrane fluidity in living organisms have largely concentrated on the participation of diacylphospholipids and their acyl chains in these processes. The effects of additions of sterols to diacylphospholipids have also been intensively investigated. In addition to the fact that diacylphosphatides are the predominant lipid class in many biological membranes, physical studies on these lipids have been facilitated by the relative ease of chemical synthesis of pure diacylphospholipids with homogeneous acyl chains. Added to this consideration, many of the now classical studies on the biological regulation of membrane fluidity were done on mycoplasmas, acholeplasmas, and Escherichia coli, all of which contain diacyl lipids with or without sterols, as their predominant lipid types. As many of the chapters in this volume will undoubtedly attest, considerable understanding of the phase behavior of these lipids and the membranes that contain them has been achieved. In addition, progress is being made on the ther-motropic phase behavior of other major lipid classes such as sphingolipids (see Ruocco et al., 1981, for references). Ether lipids in the form of plas-malogens (1-O-alk-l′-enyl-2-acyl phosphoglycerides) and 1-O-alkyl-2-acyl phosphoglycerides are other major lipid classes in biological membranes.

Keywords

Glycerol Galactose Biotin Butyr Tempo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, P. G., and Gunstone, F. D., 1975, Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins: Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine, J. Biol. Chem. 250:4470.PubMedGoogle Scholar
  2. Baumann, N. A., Hagen, P.-O., and Goldfine, H., 1965, Phospholipids of Clostridium butyricum: Studies on plasmalogen composition and biosynthesis, J. Biol. Chem. 240:1559.PubMedGoogle Scholar
  3. Boggs, J. M., Stamp, D., Hughes, D. W., and Deber, C. M., 1981, Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids, Biochemistry 20:5728.PubMedCrossRefGoogle Scholar
  4. Broquist, H. P., and Snell, E. E., 1951, Biotin and bacterial growth. I. Relation to aspartate, oleate, and carbon dioxide, J. Biol. Chem. 188:431.PubMedGoogle Scholar
  5. Bunow, M. R., 1979, Two gel states of cerebrosides: Calorimetric and Raman spectroscopic evidence, Biochim. Biophys. Acta 574:542.PubMedGoogle Scholar
  6. Clarke, N. G., Hazlewood, G. P., and Dawson, R. M. C, 1980, Structure of diabolic acid-containing phospholipids isolated from Butyrivibrio sp., Biochem. J. 191:561.PubMedGoogle Scholar
  7. Cullis, P. R., and de Kruijff, B., 1978, The polymorphic phase behaviour of phosphatidyle-thanolamines of natural and synthetic origin: A 31P NMR study, Biochim. Biophys. Acta 513:31.PubMedCrossRefGoogle Scholar
  8. Cummins, C. J., and Johnson, J. L., 1971, Taxonomy of the clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia, J. Gen. Microbiol. 67:33.Google Scholar
  9. Davis, M.-T.B., and Silbert, D. F., 1974, Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12, Biochim. Biophys. Acta 373:224.PubMedCrossRefGoogle Scholar
  10. Elsden, S. R., Hilton, M. G., Parsley, K. R., and Self, R., 1980, The lipid fatty acids of proteolytic clostridia, J. Gen. Microbiol. 118:115.Google Scholar
  11. Esfahani, M., Barnes, E. M., Jr., and Wakil, S. J., 1969, Control of fatty acid composition in phospholipids of Escherichia coli: Response to fatty acid supplements in a fatty acid auxotroph, Proc. Natl. Acad. Sci. USA 64:1057.PubMedCrossRefGoogle Scholar
  12. Estep, T. N., Calhoun, W. I., Barenholz, Y., Biltonen, R. L., Shipley, G. G., and Thompson, T. E., 1980, Evidence for metastability in stearoylsphingomyelin bilayers, Biochemistry 19:20.PubMedCrossRefGoogle Scholar
  13. Fritsche, D., and Thelen, A., 1973, Die Abgrenzung der Genera Bacteriodes und Sphaerophorus auf Grund der Struktur ihrer komplexen Lipoide, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 223:356.Google Scholar
  14. Gigg, R., 1972, The chemical synthesis of plasmalogens, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 87–108, Academic Press, New York.Google Scholar
  15. Goldfine, H., 1979, Why bacteria may not tightly regulate the synthesis of fatty acids in response to exogenous fatty acids, in: Microbiology 1979 (D. Schlessinger, ed.), pp. 14–16, American Society for Microbiology, Washington, D.C.Google Scholar
  16. Goldfine, H., and Hagen, P.-O., 1972, Bacterial plasmalogens, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 329–350, Academic Press, New York.Google Scholar
  17. Goldfine, H., and Johnston, N. C, 1980, Regulation of membrane fluidity in anaerobic bacteria, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 365–380, Humana Press, Clifton, N.J.Google Scholar
  18. Goldfine, H., Khuller, G. K., Borie, R. P., Silverman, B., Selick, H., Johnston, N. C., Vanderkooi, J. M., and Horwitz, A. F., 1977, Effects of growth temperature and supplementation with exogenous fatty acids on some physical properties of Clostridium butyricum phospholipids, Biochim. Biophys. Acta 488:341.PubMedGoogle Scholar
  19. Goldfine, H., Johnston, N. C, and Phillips, M. C, 1981, Phase behavior of ether lipids from Clostridium butyricum, Biochemistry 20:2908.PubMedCrossRefGoogle Scholar
  20. Goldfine, H., Johnston, N. C, and Bishop, D. G., 1982, Ether phospholipid asymmetry in Clostridium butyricum, Biochem. Biophys. Res. Commun. 108:1502.PubMedCrossRefGoogle Scholar
  21. Hagen, P.-O., 1974, Lipids of Sphaerophorus ridiculosis: Plasmalogen composition, J. Bacteriol. 119:643.PubMedGoogle Scholar
  22. Hauser, H., and Phillips, M. C, 1979, Interactions of the polar groups of phospholipid bilayer membranes, Prog. Surf. Membr. Sci. 13:297.Google Scholar
  23. Hauser, H., Hazlewood, G. P., and Dawson, R. M. C, 1979, Membrane fluidity of a fatty acid auxotroph grown with palmitic acid, Nature (London) 279:536.CrossRefGoogle Scholar
  24. Hazlewood, G. P., and Dawson, R. M. C, 1975, Isolation and properties of a phospholipid-hydrolyzing bacterium from ovine rumen fluid, J. Gen. Microbiol. 89:163.Google Scholar
  25. Hazlewood, G. P., and Dawson, R. M. C, 1979, Characteristics of a lipolytic and fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen, J. Gen. Microbiol. 112:15.PubMedGoogle Scholar
  26. Hazlewood, G. P., Clarke, N. G., and Dawson, R. M. C., 1980a, Complex lipids of a lipolytic and general-fatty-acid-requiring Butyrivibrio sp. isolated from the ovine rumen, Biochem. J. 191:555.PubMedGoogle Scholar
  27. Hazlewood, G. P., Dawson, R. M. C, and Hauser, H., 1980b, The question of membrane fluidity in an anaerobic general fatty acid auxotroph, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 191–202, Humana Press, Clifton, N.J.Google Scholar
  28. Horrocks, L. A., 1972, Content, composition, and metabolism of mammalian and avian lipids that contain ether groups, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 177–212, Academic Press, New York.Google Scholar
  29. Israelachvili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys. 13:121.PubMedCrossRefGoogle Scholar
  30. Jackson, M. B., and Sturtevant, J. M., 1977, Studies of the lipid phase transitions of Escherichia coli by high sensitivity differential scanning colorimetry, J. Biol. Chem. 252:4749.PubMedGoogle Scholar
  31. Jantzen, F., and Hofstad, T., 1981, Fatty acids of Fusobacterium species: Taxonomic implications, J. Gen. Microbiol. 123:163.PubMedGoogle Scholar
  32. Johnston, N. C, and Goldfine, H., 1982, Effects of growth temperature on fatty acid and alk-1-enyl group compositions of Veillonella parvula and Megasphaera elsdenii phospholipids, J. Bacteriol. 149:567.PubMedGoogle Scholar
  33. Kamio, Y., and Takahashi, H., 1980, Isolation and characterization of outer and inner membranes of Selenomonas rwninantium: Lipid composition, J. Bacteriol. 141:888.PubMedGoogle Scholar
  34. Kamio, Y., Kanegasaki, S., and Takahashi, H., 1970, Fatty acid and aldehyde compositions in phospholipids of Selenomonas ruminantium with reference to growth conditions, J. Gen. Appl. Microbiol. 16:29.CrossRefGoogle Scholar
  35. Kepler, C. R., Tucker, W. P., and Tove, S. B., 1970, Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate Δ12-cis, Δ11 -trans isomerase from Butyrivibrio fibrisolvens, J. Biol. Chem. 245:3612.PubMedGoogle Scholar
  36. Khuller, G. K., and Goldfine, H., 1974, Phospholipids of Clostridium butyricum. V. Effects of growth temperature on fatty acid, alk-1-enyl ether group, and phospholipid composition, J. Lipid Res. 15:500.PubMedGoogle Scholar
  37. Khuller, G. K., and Goldfine, H., 1975, Replacement of acyl and alk-1-enyl groups in Clostridium butyricum phospholipids by exogenous fatty acids, Biochemistry 14:3642.PubMedCrossRefGoogle Scholar
  38. Klein, R. A., Hazlewood, G. P., and Dawson, R. M. C, 1979, A new series of long-chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp., Biochem. J. 183:691.PubMedGoogle Scholar
  39. Langworthy, T. A., Mayberry, W. R., Smith, P. F., and Robinson, I. M., 1975, Plasmalogen composition of Anaeroplasma, J. Bacteriol. 122:785.PubMedGoogle Scholar
  40. Lee, T.-C, and Fitzgerald, V., 1980, Phase transitions of alkyl ether analogs of phosphatidyl-choline, Biochim. Biophys. Acta 598:189.PubMedCrossRefGoogle Scholar
  41. Livermore, B. P., and Johnson, R. C, 1974, Lipids of the Spirochaetales: Comparison of the lipids of several members of the genera Spirochaeta, Treponema, and Leptospira, J. Bacteriol. 120:1268.PubMedGoogle Scholar
  42. Makula, R. A., and Finnerty, W. R., 1974, Phospholipid composition of Desulfovibrio species, J. Bacteriol. 120:1279.PubMedGoogle Scholar
  43. Makula, R. A., and Finnerty, W. R., 1975, Isolation and characterization of an ornithine-containing lipid from Desulfovibrio gigas, J. Bacteriol. 123:523.PubMedGoogle Scholar
  44. Matsumoto, M., Tamiya, K., and Koizumi, K., 1971, Studies on neutral lipids and a new type of aldehydogenic ethanolamine phospholipid in Clostridium butyricum, J. Biochem. (Tokyo) 69:617.Google Scholar
  45. Matthews, H. M., Yang, T.-K., and Jenkin, H. M., 1979, Unique lipid composition of Treponema pallidum (Nichols virulent strain), Infect. Immun. 24:713.PubMedGoogle Scholar
  46. Meyer, H., and Meyer, F., 1971, Lipid metabolism in the parasite and free-living spirochetes Treponema pallidum (Reiter) and Treponema zuelzerae, Biochim. Biophys. Acta 231:93.PubMedGoogle Scholar
  47. Miyagawa, E., Azuma, R., and Suto, T., 1978, Distribution of sphingolipids in Bacteroides species, J. Gen. Appl. Microbiol. 24:341.CrossRefGoogle Scholar
  48. Moss, C. W., and Lewis, V. J., 1967, Characterization of clostridia by gas chromatography. I. Differentiation of species by cellular fatty acids, Appl. Microbiol. 15:390.PubMedGoogle Scholar
  49. Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330.PubMedCrossRefGoogle Scholar
  50. Phillips, M. C., Hauser, H., and Paltauf, F., 1972, The inter-and intra-molecular mixing of hydrocarbon chains in lecithin/water systems, Chem. Phys. Lipids 8:127.PubMedCrossRefGoogle Scholar
  51. Rand, R. P., Tinker, D. O., and Fast, P. G., 1971, Polymorphism of phosphatidylethanolamines from two natural sources, Chem. Phys. Lipids 6:333.PubMedCrossRefGoogle Scholar
  52. Reiss-Husson, F., 1967, Structure des phases liquide-crystallines de differents phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’eau, J. Mol. Biol. 25:363.PubMedCrossRefGoogle Scholar
  53. Roots, B. I., 1968, Phospholipids of goldfish (Carassius auratus L.) brain: The influence of environmental temperature, Comp. Biochem. Physiol. 25:457.PubMedCrossRefGoogle Scholar
  54. Roots, B. I., and Johnston, R. V., 1968, Plasmalogens of the nervous system and environmental temperature, Comp. Biochem. Physiol. 26:553.PubMedCrossRefGoogle Scholar
  55. Ruocco, M. J., Atkinson, D., Small, D. M., Skarjune, R. P., Oldfield, E., and Shipley, G. G., 1981, X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoyl-galactosyl-sphingosine (cerebroside), Biochemistry 20:5957.PubMedCrossRefGoogle Scholar
  56. Silber, P., Borie, R. P., and Goldfine, H., 1980, The enzymes of phospholipid synthesis in Clostridium butyricum, J. Lipid Res. 21:1022.PubMedGoogle Scholar
  57. Silber, P., Borie, R. P., Mikowski, E. J., and Goldfine, H., 1981, Phospholipid biosynthesis in some anaerobic bacteria, J. Bacteriol. 147:57.PubMedGoogle Scholar
  58. Silvius, J. R., and McElhaney, R. N., 1979, Effects of phospholipid acyl chain structure on thermotropic phase properties. II. Phosphatidylcholines with unsaturated or cyclopropane chains, Chem. Phys. Lipids 25:125.CrossRefGoogle Scholar
  59. Thompson, G. A., Jr., 1972, Ether-linked lipids in molluscs, in: Ether Lipids: Chemistry and Biology (F. Snyder, ed.), pp. 313–320, Academic Press, New York.Google Scholar
  60. van Dijck, P. W. M., de Kruijff, B., van Deenen, L. L. M., de Gier, J., and Demel, R. A., 1976, The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers, Biochem. Biophys. Acta 455:576.PubMedCrossRefGoogle Scholar
  61. van Golde, L. M. G., Prins, R. A., Franklin-Klein, W., and Akkermans-Kruyswijk, J., 1973, Phosphatidylserine and its plasmalogen analogue as major lipid constituents in Megasphaera elsdenii, Biochim. Biophys. Acta 326:314.PubMedGoogle Scholar
  62. van Golde, L. M. G., Akkermans-Kruyswijk, J., Franklin-Klein, W., Lankhorst, A., and Prins, R. A., 1975, Accumulation of phosphatidylserine in strictly anaerobic lactate fermenting bacteria, FEBS Lett. 53:57.PubMedCrossRefGoogle Scholar
  63. Vaughan, D. J., and Keough, K. M., 1974, Changes in phase transitions of phosphatidyle-thanolamine and phosphatidylcholine water dispersions induced by small modifications in the headgroup and backbone regions, FEBS Lett. 47:158.PubMedCrossRefGoogle Scholar
  64. Verkley, A. J., Ververgaert, P. H. J. T., Prins, R. A., and van Golde, L. M. G., 1975, Lipid-phase transitions of the strictly anaerobic bacteria Veillonella parvula and Anaerovibrio lipolytica, J. Bacteriol. 124:1522.PubMedGoogle Scholar
  65. Wegner, G. H., and Foster, E. M., 1963, Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes, J. Bacteriol. 85:53.PubMedGoogle Scholar
  66. White, D. C., Tucker, A. N., and Sweeley, C. C., 1969, Characterization of the iso-branched sphinganines from the ceramide phospholipids of Bacteroides melaninogenicus, Biochim. Biophys. Acta 187:527.PubMedGoogle Scholar
  67. Wieslander, υ., Christiansson, A., Rilfors, L., Khan, A., Johansson, L. B.-A., and Lindblom, G., 1981, Lipid phase structure governs the regulation of lipid composition in membranes of Acholeplasma laidlawii, FEBS Lett. 124:273.CrossRefGoogle Scholar
  68. Yang, R. D., Patel, K. M., Pownall, H. J., Knapp, R. D., Sklar, L. A., Crawford, R. B., and Morrisett, J. D., 1979, Biophysical properties of a major membrane phospholipid, dielaidoylphosphatidylethanolamine, found in an Escherichia coli fatty acid auxotroph, J. Biol. Chem. 254:8256.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Howard Goldfine
    • 1
  1. 1.Department of Microbiology School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations