Intermolecular Hydrogen Bonding between Membrane Lipids

  • Joan M. Boggs
Part of the Biomembranes book series (B, volume 12)

Abstract

Biological membranes contain a great variety of lipids with different hydrocarbon chains, polar groups, backbone structure (glycerol or sphin-gosine), type of chemical linkage (ester or ether) of the hydrocarbon chains to glycerol, as well as other less common variations. This suggests that lipids must have some functions more specialized than maintenance of a bilayer to enclose the cell contents and of proper fluidity to allow dynamic protein function. Studies of the physical properties and phase behavior of lipids have shown that lipids can also play dynamic roles and can respond to changes in their environment by undergoing phase transitions, alterations in lipid— lipid and lipid—protein interactions, and by release or uptake of cations or protons. Several recent reviews have attempted to explain the special properties of different lipids and emphasized their dynamic organization and function (Träuble et al., 1976; Eibl, 1977; Seelig, 1978; Cullis and de Kruijff, 1979; Eibl and Woolley, 1979; Häuser and Phillips, 1979; Nagle, 1980; Barenholz and Thompson, 1980; Israelachvili et al., 1980; Boggs, 1980).

Keywords

Enthalpy Choline Sphingosine Lesterol Hexanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson, S., Pascher, I., Larsson, K., and Karlsson, K. A., 1972, Molecular arrangements in glycosphingolipids, Chem. Phys. Lipids 8:152.CrossRefGoogle Scholar
  2. Abramson, M. B., Katzman, R., Wilson, C. E., and Gregor, H. P., 1964, Ionic properties of aqueous dispersions of phosphatidic acid, J. Biol. Chem. 239:4066.PubMedGoogle Scholar
  3. Akutsu, H., Ikematsu, M., and Kyogoku, Y., 1981, Molecular structure and interaction of dipalmitoyl phosphatidylcholine in multilayers, comparative study with phosphatidyle-thanolamine, Chem. Phys. Lipids 28:149.CrossRefGoogle Scholar
  4. Albrecht, O., Gruler, H., and Sackmann, E., 1981, Pressure-composition phase diagrams of cholesterol lecithin, cholesterol/phosphatidic acid, and lecithin phosphatidic and mixed monolayers: A Langmuir film balance study, J. Colloid Interface Sci. 79:319.CrossRefGoogle Scholar
  5. Anthony, J. S., and Moscarello, M. A., 1971, A conformation change induced in the basic encephalitogen by lipids, Biochim. Biophys. Acta 243:429.PubMedGoogle Scholar
  6. Arnold, K., Lösche, A., and Gawrisch, K., 1981, 31P-NMR investigations of phase separation in phosphatidylcholine/phosphatidylethanolamine mixtures, Biochim. Biophys. Acta 645:143.PubMedCrossRefGoogle Scholar
  7. Bach, D., Bursuker, I., Eibl, H., and Miller, I. R., 1978, Differential scanning calorimetry of dipalmitoylphosphatidylcholine analogues and of their interaction products with basic polypeptides, Biochim. Biophys. Acta 514:310.PubMedCrossRefGoogle Scholar
  8. Barenholz, Y., and Thompson, T. E., 1980, Sphingomyelins in bilayers and biological membranes, Biochim. Biophys. Acta 604:129.PubMedCrossRefGoogle Scholar
  9. Barenholz, Y., Suurkuusk, J., Mountcastle, D., Thompson, T. E., and Biltonen, R. L., 1976, A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins, Biochemistry 15:2441.PubMedCrossRefGoogle Scholar
  10. Barsukov, L. I., Victorov, A. V., Vasilenko, I. A., Evstigneeva, R. P., and Bergelson, L. D., 1980, Investigation of the inside-outside distribution, intermembrane exchange and transbilayer movement of phospholipids in sonicated vesicles by shift reagent NMR, Biochim. Biophys. Acta 598:153.PubMedCrossRefGoogle Scholar
  11. Berde, C. B., Andersen, H. C., and Hudson, B. S., 1980, A theory of the effects of head-group structure and chain unsaturation on the chain melting transition of phospholipid dispersions, Biochemistry 19:4279.PubMedCrossRefGoogle Scholar
  12. Berden, J. A., Barker, R. W., and Radda, G. K., 1975, NMR studies on phospholipid bilayers: Some factors affecting lipid distribution, Biochim. Biophys. Acta 375:186.PubMedCrossRefGoogle Scholar
  13. Bergelson, L. D., and Barsukov, L. I., 1977, Topological asymmetry of phospholipids in membranes, Science 197:224.PubMedCrossRefGoogle Scholar
  14. Birrell, G. B., and Griffith, O. H., 1976, Cytochrome C induced lateral phase separation in a diphosphatidylglycerol-steroid spin label model membrane, Biochemistry 15:2925.PubMedCrossRefGoogle Scholar
  15. Bittman, R., Clejan, S., Jain, M. K., Deroo, P. W., and Rosenthal, A. F., 1981, Effects of sterols on permeability and phase transitions of bilayers from phosphatidylcholines lacking acyl groups, Biochemistry 20:2790.PubMedCrossRefGoogle Scholar
  16. Blume, A., 1980, Thermotropic behavior of phosphatidylethanolamine-cholesterol and phosphatidylethanolamine-phosphatidylcholine-cholesterol mixtures, Biochemistry 19:4908.PubMedCrossRefGoogle Scholar
  17. Blume, A., and Eibl, H., 1979, The influence of charge on bilayer membranes: Calorimetric investigations of phosphatidic acid bilayers, Biochim. Biophys. Acta 558:13.PubMedCrossRefGoogle Scholar
  18. Blume, A., and Eibl, H., 1981, A calorimetric study of the thermotropic behavior of 1,2-dipentadecylmethylidene phospholipids, Biochim. Biophys. Acta 640:609.PubMedCrossRefGoogle Scholar
  19. Boggs, J. M., 1980, Intermolecular hydrogen bonding between lipids—Effect on organization and function of lipids in membranes, Can. J. Biochem. 58:755.PubMedGoogle Scholar
  20. Boggs, J. M., and Hsia, J. C, 1973, Structural characteristics of hydrated glycerol-and sphingo-lipids: A spin label study, Can. J. Biochem. 51:1451.PubMedCrossRefGoogle Scholar
  21. Boggs, J. M., and Moscarello, M. A., 1978, Effect of basic protein from human central nervous system myelin on lipid bilayer structure. J. Membr. Biol. 39:75.PubMedCrossRefGoogle Scholar
  22. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1977a, Phase separation of acidic and neutral phospholipids induced by human myelin basic protein, Biochemistry 16:5420.PubMedCrossRefGoogle Scholar
  23. Boggs, J. M., Wood, D. D., Moscarello, M. A., and Papahadjopoulos, D., 1977b, Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles, Biochemistry 16:2325.PubMedCrossRefGoogle Scholar
  24. Boggs, J. M., Stollery, J. G., and Moscarello, M. A., 1980, Effect of lipid environment on the motion of a spin-label covalently bound to myelin basic protein, Biochemistry 19:1226.PubMedCrossRefGoogle Scholar
  25. Boggs, J. M., Stamp, D., Hughes, D. W., and Deber, C. M., 1981a, Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids, Biochemistry 20:5728.PubMedCrossRefGoogle Scholar
  26. Boggs, J. M., Wood, D. D., and Moscarello, M. A., 1981b, Hydrophobic and electrostatic interactions of myelin basic protein with lipid: Participation of N-terminal and C-terminal portions, Biochemistry 20:1065.PubMedCrossRefGoogle Scholar
  27. Boggs, J. M., Clement, I. R., Moscarello, M. A., Eylar, E. H., and Hashim, G., 1981c, Antibody precipitation of lipid vesicles containing myelin proteins: Dependence on lipid composition, J. Immunol. 126:1207.PubMedGoogle Scholar
  28. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1982a, Structural organization of myelin—Role of lipid-protein interactions determined in model systems, in: Lipid-Protein Interactions, Vol. 2 (O. H. Griffith and P. Jost, eds.), p. 1, Wiley-Interscience, New York.Google Scholar
  29. Boggs, J. M., Stamp, D., and Moscarello, M. A., 1982b, Effect of pH and fatty acid chain length on the interaction of myelin basic protein with phosphatidylglycerol, Biochemistry 21:1208.PubMedCrossRefGoogle Scholar
  30. Brown, M. F., and Seelig, J., 1977, Ion induced changes in head group conformation of lecithin bilayers, Nature (London) 269:721.CrossRefGoogle Scholar
  31. Browning, J. L., and Seelig, J., 1980, Bilayers of phosphatidylserine: A deuterium and phosphorus nuclear magnetic resonance study, Biochemistry 19:1262.PubMedCrossRefGoogle Scholar
  32. Bunow, M. R., 1979, Two gel states of cerebrosides: Calorimetric and Raman spectroscopic evidence, Biochim. Biophys. Acta 574:542.PubMedGoogle Scholar
  33. Bunow, M. R., and Levin, I. W., 1980, Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy, Biophys. J. 32:1007.PubMedCrossRefGoogle Scholar
  34. Bush, S. F., Levin, H., and Levin, I. W., 1980a, Cholesterol-lipid interactions: An infrared and Raman spectroscopic study of the carbonyl stretching mode region of 1,2-dipalmitoylphosphatidylcholine bilayers, Chem. Phys. Lipids 27:101.CrossRefGoogle Scholar
  35. Bush, S. F., Adams, R. G., and Levin, I. W., 1980b, Structural reorganizations in lipid bilayer systems: Effect of hydration and sterol addition on Raman spectra of dipalmitoylphos-phatidylcholine multilayers, Biochemistry 19:4429.PubMedCrossRefGoogle Scholar
  36. Calhoun, W. I., and Shipley, G. G., 1979, Fatty acid composition and thermal behavior of natural sphingomyelins, Biochemistry 18:1717.PubMedCrossRefGoogle Scholar
  37. Cevc, G., Watts, A., and Marsh, D., 1980, Non-electrostatic contribution to the titration of the ordered-fluid phase transition of phosphatidylglycerol bilayers, FEBS Lett. 120:267.PubMedCrossRefGoogle Scholar
  38. Cevc, G., Watts, A., and Marsh, D., 1981, Titration of the phase transition of phosphatidylserine bilayer membranes: Effects of pH, surface electrostatics, ion binding, and head-group hydration, Biochemistry 20:4955.PubMedCrossRefGoogle Scholar
  39. Chapman, D., Urbina, J., and Keough, K. M., 1974, Biomembrane phase transitions: Studies of lipid-water systems using differential scanning calorimetry, J. Biol. Chem. 249:2512.PubMedGoogle Scholar
  40. Christiansson, A., and Wieslander, Å., 1978, Membrane lipid metabolism in Acholeplasma laidlawii A EF22, Eur. J. Biochem. 85:65.PubMedCrossRefGoogle Scholar
  41. Christiansson, A., and Wieslander, Å., 1980, Control of membrane polar lipid composition in Acholeplasma laidlawii A by the extent of saturated fatty acid synthesis, Biochim. Biophys. Acta 595:189.PubMedCrossRefGoogle Scholar
  42. Clejan, S., Bittman, R., Deroo, P. W., Isaacson, Y. A., and Rosenthal, A. F., 1979, Permeability properties of sterol-containing liposomes from analogues of phosphatidylcholine lacking acyl groups, Biochemistry 10:2118.CrossRefGoogle Scholar
  43. Clowes, A. W., Cherry, R. J., and Chapman, D., 1971, Physical properties of lecithin-cere-broside bilayers, Biochim. Biophys. Acta 249:301.PubMedCrossRefGoogle Scholar
  44. Correa-Freire, M. C., Freire, E., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1979, Thermotropic behavior of monoglucocerebroside-dipalmitoylphosphatidylcholine multilamellar liposomes, Biochemistry 18:442.PubMedCrossRefGoogle Scholar
  45. Cullis, P. R., and de Kruijff, B., 1978a, The polymorphic phase behavior of phosphatidyle-thanolamines of natural and synthetic origin: A 31P NMR study, Biochim. Biophys. Acta 513:31.PubMedCrossRefGoogle Scholar
  46. Cullis, P. R., and de Kruijff, B., 1978b, Polymorphic phase behavior of lipid mixtures as detected by 31P-NMR: Evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine, Biochim. Biophys. Acta 507:207.PubMedCrossRefGoogle Scholar
  47. Cullis, P. R., and de Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399.PubMedGoogle Scholar
  48. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agents on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature (London) 271:672.CrossRefGoogle Scholar
  49. Cullis, P. R., and Verkleij, A. J., 1979, Modulation of membrane structure by Ca+2 and dibucaine as detected by 31P NMR, Biochim. Biophys. Acta 552:546.PubMedCrossRefGoogle Scholar
  50. Cullis, P. R., van Dijck, P. W. M., de Kruijff, B., and de Gier, J., 1978, Effects of cholesterol on the properties of equimolar mixtures of synthetic phosphatidylethanolamine and phosphatidylcholine: A 31P-NMR and differential scanning calorimetry study, Biochim. Biophys. Acta 513:21.PubMedCrossRefGoogle Scholar
  51. de Kruijff, B., and Baken, P., 1978, Rapid transbilayer movement of phospholipids induced by an asymmetrical perturbation of the bilayer, Biochim. Biophys. Acta 507:38.PubMedCrossRefGoogle Scholar
  52. de Kruijff, B., Demel, R. A., and van Deenen, L. L. M., 1972, The effect of cholesterol and epi-cholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes, Biochim. Biophys. Acta 255:331.CrossRefGoogle Scholar
  53. de Kruijff, B., Demel, R. A., Slotboom, A. J., van Deenen, L. L. M., and Rosenthal, A. F., 1973, The effect of the polar headgroups on the lipid-cholesterol interaction: A monolayer and differential scanning calorimetry study, Biochim. Biophys. Acta 307:1.CrossRefGoogle Scholar
  54. de Kruijff, B., Verkleij, A. J., van Echteld, C. J. A., Gerritsen, W. J., Mombers, C, Noordam, P. C, and de Gier, J., 1979, The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze fracture electron microscopy, Biochim. Biophys. Acta 555:200.PubMedCrossRefGoogle Scholar
  55. Demel, R. A., London, Y., Geurts van Kessel, W. S. M., Vossenberg, F. G. A., and van Deenen, L. L. M., 1973, The specific interaction of myelin basic protein with lipids at the air-water interface, Biochim. Biophys. Acta 311:507.PubMedCrossRefGoogle Scholar
  56. Demel, R. A., Jansen, J. W. C. M., van Dijck, P. W. M., and van Deenen, L. L. M., 1977, The preferential interaction of cholesterol with different classes of phospholipids, Biochim. Biophys. Acta 465:1PubMedCrossRefGoogle Scholar
  57. Deutsch, J. W., and Kelly, R. B., 1981, Lipids of synaptic vesicles: Relevance to the mechanism of membrane fusion, Biochemistry 20:378.PubMedCrossRefGoogle Scholar
  58. Eibl, H., 1977, Phospholipid bilayers: Influence of structure and charge, in: Polyunsaturated Fatty Acids (W. H. Kunau and R. T. Holman, eds.), p. 229, American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  59. Eibl, H., and Blume, A., 1979, The influence of charge on phosphatidic acid bilayer membranes, Biochim. Biophys. Acta 553:476.PubMedCrossRefGoogle Scholar
  60. Eibl, H., and Woolley, P., 1979, Electrostatic interactions at charged lipid membranes: Hydrogen bonds in lipid membrane surfaces, Biophys. Chem. 10:261.PubMedCrossRefGoogle Scholar
  61. Emmelot, P., and van Hoeven, R. P., 1975, Phospholipid unsaturation and plasma membrane organization, Chem. Phys. Lipids 14:236.PubMedCrossRefGoogle Scholar
  62. Estep, T. N., Mountcastle, D. B., Biltonen, R. L., and Thompson, T. E., 1978, Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures, Biochemistry 17:1984.PubMedCrossRefGoogle Scholar
  63. Estep, T. N., Mountcastle, D. B., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1979, Thermal behavior of synthetic sphingomyelin-cholesterol dispersions, Biochemistry 18:2112.PubMedCrossRefGoogle Scholar
  64. Estep, T. N., Calhoun, W. J., Barenholz, Y., Biltonen, R. L., Shipley, G. G., and Thompson, T. E., 1980, Evidence for metastability in stearoyl-sphingomyelin bilayers, Biochemistry 19:20.PubMedCrossRefGoogle Scholar
  65. Farren, S. B., and Cullis, P. R., 1980, Polymorphism of phosphatidylglycerol-phosphatidyle-thanolamine model membrane systems: A 31P NMR study, Biochem. Biophys. Res. Commun. 97:182.PubMedCrossRefGoogle Scholar
  66. Findlay, E. J., and Barton, P. G., 1978, Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions, Biochemistry 17:2400.PubMedCrossRefGoogle Scholar
  67. Fong, J. W., Tirri, L. J., Deshmukh, D. S., and Brockerhoff, H., 1977, Studies on the hydrogen belts of membranes. I. Diester, diether, and dialkyl phosphatidylcholines and polyoxy-ethylene glycerides in monolayers with cholesterol, Lipids 12:857.PubMedCrossRefGoogle Scholar
  68. Freire, E., Bach, D., Correa-Freire, M., Miller, I., and Barenholz, Y., 1980, Calorimetric investigation of the complex phase behavior of glucocerebroside dispersions, Biochemistry 19:3662.PubMedCrossRefGoogle Scholar
  69. Galla, H.-J., and Sackmann, E., 1975, Chemically induced lipid phase separation in model membranes containing charged lipids: A spin label study, Biochim. Biophys. Acta 401:509.PubMedCrossRefGoogle Scholar
  70. Gawrisch, K., Arnold, K., Riiger, H. J., Kertscher, P., and Nuhn, P., 1977, NMR and calorimetric studies of changes in phase transition of head group modified phospholipids, Chem. Phys. Lipids 20:285.PubMedCrossRefGoogle Scholar
  71. Gerritsen, W. J., de Kruijff, B., Verkleij, A. J., de Gier, J., and van Deenen, L. L. M., 1980, Ca+2-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers, Biochim. Biophys. Acta 598:554.PubMedCrossRefGoogle Scholar
  72. Gould, R. M., and London, Y., 1972, Specific interaction of central nervous system myelin basic protein with lipids: Effects of basic protein on glucose leakage from liposomes, Biochim. Biophys. Acta 290:200.PubMedCrossRefGoogle Scholar
  73. Haest, C. W. M., de Gier, J., Op den Kamp, J. A. F., Bartels, P., and van Deenen, L. L. M., 1972, Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition, Biochim. Biophys. Acta 255:720.PubMedCrossRefGoogle Scholar
  74. Haest, C. W. M., Plasma, G., Kamp, D., and Deuticke, B., 1978, Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane, Biochim. Biophys. Acta 509:21.PubMedCrossRefGoogle Scholar
  75. Harlos, K., and Eibl, H., 1980a, Influence of calcium on phosphatidylglycerol: Two separate lamellar structures, Biochemistry 19:895.PubMedCrossRefGoogle Scholar
  76. Harlos, K., and Eibl, H., 1980b, Influence of calcium on phosphatidylethanolamine: An investigation of the structure at high pH, Biochim. Biophys. Acta 601:113.PubMedCrossRefGoogle Scholar
  77. Harlos, K., and Eibl, H., 1981, Hexagonal phases in phospholipids with saturated chains: Phosphatidylethanolamines and phosphatidic acids, Biochemistry 20:2888.PubMedCrossRefGoogle Scholar
  78. Harlos, K., Stümpel, J., and Eibl, H., 1979, Influence of pH on phosphatidic acid multilayers: A rippled structure at high pH values, Biochim. Biophys. Acta 555:409.PubMedCrossRefGoogle Scholar
  79. Häuser, H., and Dawson, R. M. C, 1967, The binding of calcium at lipid-water interfaces, Eur. J. Biochem. 1:61.PubMedCrossRefGoogle Scholar
  80. Hauser, H., and Phillips, M. C, 1979, Interactions of the polar groups of phospholipid bilayer membranes, Prog. Surf. Membr. Sci. 13:297.Google Scholar
  81. Hauser, H., and Shipley, G. G., 1981, Crystallization of phosphatidylserine bilayers induced by lithium, J. Biol. Chem. 256:11377.PubMedGoogle Scholar
  82. Häuser, H., Guyer, W., Levine, B., Skrabal, P., and Williams, R. J. P., 1978, The conformation of the polar group of lysophosphatidyleholine in H2O: Conformational changes induced by polyvalent cations, Biochim. Biophys. Acta 508:450.PubMedCrossRefGoogle Scholar
  83. Häuser, H., Pascher, L., Pearson, R. H., and Sundell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidyleholine, Biochim. Biophys. Acta 650:21.PubMedGoogle Scholar
  84. Haynes, D. H., and Staerck, H., 1974, 1-Anilino-8-naphthalenesulfonate: A fluorescent probe of membrane surface structure, composition and mobility, J. Membr. Biol. 17:313.PubMedCrossRefGoogle Scholar
  85. Hendrickson, H. S., and Fullington, J. G., 1965, Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide, Biochemistry 4:1599.PubMedCrossRefGoogle Scholar
  86. Hermetter, A., and Paltauf, F., 1981, Permeability properties of unilamellar vesicles containing choline plasmalogens and comparison with other choline glycerophospholipid species, Chem. Phys. Lipids 29:225.CrossRefGoogle Scholar
  87. Herzfeld, J., Griffin, R. G., and Haberkorn, R. A., 1978, Phosphorus-31 chemical-shift tensors in barium diethylphosphate and urea-phosphoric acid: Model compounds for phospholipid head-group studies, Biochemistry 17:2711.PubMedCrossRefGoogle Scholar
  88. Hirata, F., and Axelrod, J., 1978, Enzymatic synthesis and rapid translocation of phosphatidyleholine by two methyltransferases in erythrocyte membranes, Proc. Natl. Acad. Sci. USA 75:2348.PubMedCrossRefGoogle Scholar
  89. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082.PubMedCrossRefGoogle Scholar
  90. Hitchcock, P. B., Mason, R., Thomas, K. M., and Shipley, G. G., 1974, Structural chemistry of 1,2-dilauroyl-dl-phosphatidylethanolamine: Molecular conformation and intermolecular packing of phospholipids, Proc. Natl. Acad. Sci. USA 71:036.CrossRefGoogle Scholar
  91. Hope, M. J., and Cullis, P. R., 1980, Effects of divalent cations and pH on phosphatidylserine model membranes: A 31P NMR study, Biochem. Biophys. Res. Commun. 92:846.PubMedCrossRefGoogle Scholar
  92. Houtsmuller, U. M. T., and van Deenen, L. L. M., 1964, On the accumulation of amino acid derivatives of phosphatidylglycerol in bacteria, Biochim. Biophys. Acta 84:96.PubMedGoogle Scholar
  93. Houtsmuller, U. M. T., and van Deenen, L. L. M., 1965, On the amino acid esters of phosphatidylglycerol from bacteria, Biochim. Biophys. Acta 106:564.PubMedGoogle Scholar
  94. Hsia, J. C, and Boggs, J. M., 1972, Influence of pH and cholesterol on the structure of phosphatidylethanolamine multibilayers, Biochim. Biophys. Acta 266:18.PubMedCrossRefGoogle Scholar
  95. Huang, C.-H., 1977, A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes, Biochim. Biophys. Acta 663:380.Google Scholar
  96. Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers, Science 212:921.PubMedCrossRefGoogle Scholar
  97. Israelachvili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys. 13:121.PubMedCrossRefGoogle Scholar
  98. Ito, T., and Ohnishi, S.-L, 1974, Ca+2-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes, Biochim. Biophys. Acta 352:29.PubMedCrossRefGoogle Scholar
  99. Ito, T., Ohnishi, S.-L., Ishinaga, M., and Kito, M., 1975, Synthesis of a new phosphatidylserine spin label and calcium-induced lateral phase separation in phosphatidylserine-phosphati-dylcholine membranes, Biochemistry 14:3064.CrossRefGoogle Scholar
  100. Jacobson, K., and Papahadjopoulos, D., 1975, Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations, Biochemistry 14:152.PubMedCrossRefGoogle Scholar
  101. Jähnig, F., Harlos, K., Vogel, H., and Eibl, H., 1979, Electrostatic interactions at charged lipid membranes: Electrostatically induced tilt, Biochemistry 18:1459.PubMedCrossRefGoogle Scholar
  102. Janiak, M. J., Small, D. M., and Shipley, G. G., 1976, Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl-and dipalmitoyllecithin, Biochemistry 15:4575.PubMedCrossRefGoogle Scholar
  103. Jendrasiak, G. L., and Hasty, J. H., 1974, The hydration of phospholipids, Biochim. Biophys. Acta 337:79.PubMedGoogle Scholar
  104. Junger, E., and Reinauer, H., 1969, Liquid crystalline phases of hydrated phosphatidylethan-olamine, Biochim. Biophys. Acta 183:304.PubMedCrossRefGoogle Scholar
  105. Karlsson, K.-A., 1977, Aspects on structure and function of sphingolipids in cell surface membranes, in: Structure of Biological Membranes (S. Abrahamson and I. Pascher, eds.), p. 254, Plenum Press, New York.Google Scholar
  106. Keniry, M. A., and Smith, R., 1981, Dependence on lipid structure of the coil-to-helix transition of bovine myelin basic protein, Biochim. Biophys. Acta 668:107.PubMedGoogle Scholar
  107. Keough, K. M., Oldfield, E., and Chapman, D., 1973, Carbon-13 and proton nuclear magnetic resonance of unsonicated model and mitochondrial membranes, Chem. Phys. Lipids 10:37.PubMedCrossRefGoogle Scholar
  108. Khan, A., Rilfors, L., Wieslander, Å., and Lindblom, G., 1981, The effect of cholesterol on the phase structure of glucolipids from Acholeplasma laidlawii membranes, Eur. J. Biochem. 116:215.PubMedCrossRefGoogle Scholar
  109. Köhler, S. J., and Klein, M. P., 1977, Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors, Biochemistry 16:519.PubMedCrossRefGoogle Scholar
  110. Kolber, M. A., and Haynes, D. H., 1979, Evidence for a role of phosphatidylethanolamine as a modulator of membrane-membrane content, J. Membr. Biol. 48:95.PubMedCrossRefGoogle Scholar
  111. Koshy, K. M., and Boggs, J. M., 1984, Partial synthesis and physical properties of cerebroside sulfate containing palmitic acid or a α-hydroxy palmitic acid, Chem. Phys. Lipids, in press.Google Scholar
  112. Koter, M., de Kruijff, B., and van Deenen, L. L. M., 1978, Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P NMR, Biochim. Biophys. Acta 514:255.PubMedCrossRefGoogle Scholar
  113. Lee, A. G., 1977, Lipid phase transitions and phase diagrams. II. Mixtures involving lipids, Biochim. Biophys. Acta 472:285.PubMedGoogle Scholar
  114. Lee, A. G., 1978, Calculation of phase diagrams from non-ideal mixtures of lipids, and a possible non-random distribution of lipids in the liquid crystalline phase, Biochim. Biophys. Acta 507:433.CrossRefGoogle Scholar
  115. Lentz, B. R., Alford, D. R., and Dombrose, F. A., 1980, Determination of phosphatidylglycerol asymmetry in small unilamellar vesicles by chemical modification, Biochemistry 19:2555.PubMedCrossRefGoogle Scholar
  116. Lentz, B. R., Hoechli, M., and Barenholz, Y., 1981, Acyl chain order and lateral domain formation in mixed phosphatidylcholine-sphingomyelin multilamellar and unilamellar vesicles, Biochemistry 20:6803.PubMedCrossRefGoogle Scholar
  117. Litman, B. J., 1974, Determination of molecular asymmetry in the phosphatidylethanolamine surface distribution in mixed phospholipid vesicles, Biochemistry 13:2844.PubMedCrossRefGoogle Scholar
  118. Löfgren, H., and Pascher, I., 1977, Molecular arrangements of sphingolipids: The monolayer behavior of ceremides, Chem. Phys. Lipids 20:273.PubMedCrossRefGoogle Scholar
  119. London, Y., and Vossenberg, F. G. A., 1973, Specific interaction of central nervous system myelin basic protein with lipids: Specific regions of the protein sequence protected from the proteolytic action of tryspin, Biochim. Biophys. Acta 307:478.PubMedCrossRefGoogle Scholar
  120. London, Y., Demel, R. A., Geurts van Kessel, W. S. M., Vossenberg, F. G. A., and van Deenen, L. L. M., 1973, The protection of A1 myelin basic protein against the action of proteolytic enzymes after interaction of the protein with lipids at the air-water interface, Biochim. Biophys. Acta 311:520.PubMedCrossRefGoogle Scholar
  121. Luna, E. J., and McConnell, H. M., 1977, The intermediate monoclinic phase of phosphati-dylcholines, Biochim. Biophys. Acta 466:381.PubMedCrossRefGoogle Scholar
  122. Mabrey, S., and Sturtevant, J. M., 1976, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry, Proc. Natl. Acad. Sci. USA 73:3862.PubMedCrossRefGoogle Scholar
  123. Mabrey, S., and Sturtevant, J. M., 1977, Incorporation of saturated fatty acids into phospha-tidylcholine bilayers, Biochim. Biophys. Acta 486:444.PubMedGoogle Scholar
  124. Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, High-sensitivity calorimetric study of mixtures of cholesterol with dimyristoyl-and dipalmitoyl-phosphatidylcholines, Biochemistry 17:2464.PubMedCrossRefGoogle Scholar
  125. MacDonald, R. C., Simon, S. A., and Baer, E., 1976, Ionic influences on the phase transition of dipalmitoylphosphatidylserine, Biochemistry 15:885.PubMedCrossRefGoogle Scholar
  126. McElhaney, R., 1974, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.PubMedCrossRefGoogle Scholar
  127. McIntosh, T. J., 1980, Differences in hydrocarbon chain tilt between hydrated phosphatidy-lethanolamine and phosphatidylcholine bilayers: A molecular packing model, Biophys. Soc. 29:237.CrossRefGoogle Scholar
  128. Mandersloot, J. G., Gerritsen, W. J., Leunissen-Bijvelt, J., van Echteld, C. J. A., Noordam, P. C, and de Gier, J., 1981, Ca+2-induced changes in the barrier properties of cardiolipin/ phosphatidylcholine bilayers, Biochim. Biophys. Acta 640:106.PubMedCrossRefGoogle Scholar
  129. Mantsch, H. H., Martin, A., and Cameron, D. G., 1981, Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines, Biochemistry 20:3138.PubMedCrossRefGoogle Scholar
  130. Marinetti, G. V., and Love, R., 1974, Extent of cross-linking of amino-phospholipid neighbors in the erythrocyte membrane as influenced by the concentration of difluorodinitrobenzene, Biochem. Biophys. Res. Commun. 61:30.PubMedCrossRefGoogle Scholar
  131. Marsh, D., and Watts, A., 1980, Molecular notion in phospholipid bilayers in the gel phase: Spin label saturation transfer ESR studies, Biochem. Biophys. Res. Commun. 94:130.PubMedCrossRefGoogle Scholar
  132. Massari, S., Pascolini, D., and Gradenigo, G., 1978, Distribution of negative phospholipids in mixed vesicles, Biochemistry 17:4465.PubMedCrossRefGoogle Scholar
  133. Melchior, D. L., and Steim, J. M., 1979, Lipid-associated thermal events in biomembranes, Prog. Surf. Membr. Sci. 13:211.Google Scholar
  134. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in co-sonicated vesicles, Biochemistry 12:2637.PubMedCrossRefGoogle Scholar
  135. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1974, Head group modulation of membrane fluidity in sonicated phospholipid dispersions, Biochemistry 13:2605.PubMedCrossRefGoogle Scholar
  136. Miller, R. G., 1980, Do lipidic particles represent intermembrane attachment sites?, Nature (London) 287:166.CrossRefGoogle Scholar
  137. Mombers, C., de Gier, J., Demel, R. A., and van Deenen, L. L. M., 1980, Spectrin-phospholipid interaction: A monolayer study, Biochim. Biophys. Acta 603:52.PubMedCrossRefGoogle Scholar
  138. Nagle, J. F., 1976, Theory of lipid monolayer and bilayer phase transitions: Effect of headgroup interactions, J. Membr. Biol. 27:233.PubMedCrossRefGoogle Scholar
  139. Nagle, J. F., 1980, Theory of the main lipid bilayer phase trnsition, Annu. Rev. Phys. Chem. 31:157.CrossRefGoogle Scholar
  140. Neuringer, L. J., Sears, B., Jungalwala, F. B., and Shriver, E. K., 1979, Difference in orientational order in phospholipid and sphingomyelin bilayers, FEBS Lett. 104:173.PubMedCrossRefGoogle Scholar
  141. Noordam, P. C, van Echteld, C. J. A., de Kruijff, B., Verkleij, A. J., and de Gier, J., 1980, Barrier characteristics of membrane model systems containing unsaturated phosphatidy-lethanolamines, Chem. Phys. Lipids 27:221.PubMedCrossRefGoogle Scholar
  142. Noordam, P. C, van Echteld, C. J. A., de Kruijff, B., and de Gier, J., 1981, Rapid transbilayer movement of phosphatidylcholine in unsaturated phosphatidylethanolamine containing model membranes, Biochim. Biophys. Acta 646:483.CrossRefGoogle Scholar
  143. Nordlund, J. R., Schmidt, C. F., and Thompson, T. E., 1981a, Transbilayer distribution in small unilamellar phosphatidylglycerol-phosphatidylcholine vesicles, Biochemistry 20:6415.PubMedCrossRefGoogle Scholar
  144. Nordlund, J. R., Schmidt, C. F., Dicken, S. N., and Thompson, T. E., 1981b, Transbilayer distribution of phosphatidylethanolamine in large and small unilamellar vesicles, Biochemistry 20:3237.PubMedCrossRefGoogle Scholar
  145. Ohnishi, S.-I., and Ito, T., 1973, Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine, Biochem. Biophys. Res. Commun. 51:132.PubMedCrossRefGoogle Scholar
  146. Oldani, D., Hauser, H., Nichols, B. W., and Phillips, M. C, 1975, Monolayer characteristics of some glycolipids at the air-water interface, Biochim. Biophys. Acta 382:1.PubMedCrossRefGoogle Scholar
  147. Paltauf, F., Hauser, H., and Phillips, M. C, 1971, Monolayer characteristics of some 1,2-diacyl, 1-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water interface, Biochim. Biophys. Acta 249:539.PubMedCrossRefGoogle Scholar
  148. Papahadjopoulos, D., 1968, Surface properties of acidic phospholipids: Interaction of mono-layers and hydrated liquid crystals with uni-and bi-valent metal ions, Biochim. Biophys. Acta 163:240.PubMedCrossRefGoogle Scholar
  149. Papahadjopoulos, D., and Weiss, L., 1969, Amino groups at the surfaces of phospholipid vesicles, Biochim. Biophys. Acta 183:417.PubMedCrossRefGoogle Scholar
  150. Papahadjopoulos, D., Cowden, M., and Kimelberg, H., 1973, Role of cholesterol in membranes: Effects of phospholipid-protein interactions, membrane permeability and enzymatic activity, Biochim. Biophys. Acta 330:8.PubMedCrossRefGoogle Scholar
  151. Papahadjopoulos, D., Poste, G., Schaeffer, B. E., and Vail, W. J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10.PubMedCrossRefGoogle Scholar
  152. Papahadjopoulos, D., Moscarello, M. A., Eylar, E. H., and Isac, T., 1975, Effects of proteins on thermotropic phase transitions of phospholipid membranes, Biochim. Biophys. Acta 401:317.PubMedCrossRefGoogle Scholar
  153. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta 448:265.PubMedCrossRefGoogle Scholar
  154. Pascher, I., 1976, Molecular arrangements in sphingolipids: Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability, Biochim. Biophys. Acta 455:433.PubMedCrossRefGoogle Scholar
  155. Pascher, I., and Sundell, S., 1977, Molecular arrangements in sphingolipids: The crystal structure of cerebroside, Chem. Phys. Lipids 20:175.CrossRefGoogle Scholar
  156. Pearson, R. H., and Pascher, I., 1979, The molecular structure of lecithin dihydrate, Nature (London) 281:499.CrossRefGoogle Scholar
  157. Phillips, M. C, and Chapman, D., 1968, Monolayer characteristics of saturated 1,2-diacyl phos-phatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface, Biochim. Biophys. Acta 163:301.PubMedCrossRefGoogle Scholar
  158. Phillips, M. C, Ladbrooke, B. D., and Chapman, D., 1970, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta 196:34.Google Scholar
  159. Ptak, M., Egret-Charlier, M., Sanson, A., and Bouloussa, O., 1980, A NMR study of the ionization of fatty acids, fatty amides and N-acyl amino acids incorporated in phosphati-dylcholine vesicles, Biochim. Biophys. Acta 600:387.PubMedCrossRefGoogle Scholar
  160. Quinn, P. J., and Dawson, R. M. C, 1969a, The interaction of cytochrome C with monolayers of phosphatidylethanolamine, Biochem. J. 113:791.PubMedGoogle Scholar
  161. Quinn, P. J., and Dawson, R. M. C, 1969b, Interactions of cytochrome C and [14C] carbox-ymethylated cytochrome C with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin, Biochem. J. 115:65.PubMedGoogle Scholar
  162. Quinn, P. J., and Sherman, W. R., 1971, Monolayer characteristics and calcium adsorption to cerebroside and cerebroside sulphate oriented at the air-water interface, Biochim. Biophys. Acta 233:734.PubMedCrossRefGoogle Scholar
  163. Rand, R. P., and Sengupta, S., 1972, Cardiolipin forms hexagonal structures with divalent cations. Biochim. Biophys. Acta 255:484.PubMedCrossRefGoogle Scholar
  164. Rand, R. P., Tinker, D. O., and Fast, P. G., 1971, Polymorphism of phosphatidylethanolamines from two natural sources, Chem. Phys. Lipids 6:33.CrossRefGoogle Scholar
  165. Reiss-Husson, F., 1967, Structure des phases liquide-crystallines de différents phospholipids, monoglycérides, sphingolipides, anhydres ou en présence d’eau, J. Mol. Biol. 25:363.PubMedCrossRefGoogle Scholar
  166. Rice, D. M., Blume, A., Wittebort, R. J., and Griffin, R. G., 1981, 2H and 13C spectra of the gel state of DPPE, Biophys. J. 33:154a.Google Scholar
  167. Roots, B. I., and Johnston, P. V., 1968, Plasmalogens of the nervous system and environmental temperature, Comp. Biochem. Physiol. 26:553.PubMedCrossRefGoogle Scholar
  168. Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, Science 195:743.PubMedCrossRefGoogle Scholar
  169. Rottem, S., Yashouv, J., Neiman, Z., and Razin, S., 1973, Cholesterol in mycoplasma membranes: Composition, ultra-structure and biological properties of membranes from Mycoplasma mycoides var. capri cells adapted to grow with low cholesterol concentrations, Biochim. Biophys. Acta 323:495.PubMedCrossRefGoogle Scholar
  170. Ruocco, M. J., Atkinson, D., Small, D. M., Skarjune, R. P., Oldfield, E., and Shipley, G. G., 1981, X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoyl-galactosylsphingosine (cerebroside), Biochemistry 20:5957.PubMedCrossRefGoogle Scholar
  171. Sacré, M.-M., Hoffmann, W., Turner, M., Tocanne, J.-F., and Chapman, D., 1979, Differential scanning calorimetric studies of some phosphatidylglycerol lipid-water systems, Chem. Phys. Lipids 69:69.CrossRefGoogle Scholar
  172. Schmidt, C. F., Barenholz, Y., Huang, C, and Thompson, T. E., 1978, Monolayer coupling in sphingomyelin bilayer systems, Nature (London) 271:75.CrossRefGoogle Scholar
  173. Schullery, S. E., Seder, T. A., Weinstein, D. A., and Bryant, D. A., 1982, Differential thermal analysis of dipalmitoylphosphatidylcholine mixtures with fatty acids and sodium soaps, Biophys. J. 37:98a.CrossRefGoogle Scholar
  174. Schwarz, F. T., and Paltauf, F., 1977, Influence of the ester carbonyl oxygens of lecithin on the permeability properties of mixed lecithin-cholesterol bilayers, Biochemistry 16:4335.PubMedCrossRefGoogle Scholar
  175. Schwarz, F. T., Paltauf, F., and Laggner, P., 1976, Studies on the interaction of cholesterol with diester-and dietherlecithin, Chem. Phys. Lipids 17:423.CrossRefGoogle Scholar
  176. Scott, H. L., Jr., 1981, Phase transitions in lipid bilayers. A theoretical model for phosphatidylethanolamine and phosphatidic acid bilayers, Biochim. Biophys. Acta 648:129.PubMedCrossRefGoogle Scholar
  177. Seelig, J., 1978, Phosphorus-31 nuclear magnetic resonance and the headgroup structure of phospholipids in membranes, Biochim. Biophys. Acta 515:105.PubMedGoogle Scholar
  178. Seelig, J., and Browning, J. L., 1978, General features of phospholipid conformation in membranes, FEBS Lett. 92:41.CrossRefGoogle Scholar
  179. Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.PubMedCrossRefGoogle Scholar
  180. Sen, A., Williams, W. P., Brain, A. P. R., Dickens, M. J., and Quinn, P. J., 1981a, Formation of inverted micelles in dispersions of mixed galactolipids, Nature (London) 293:88.CrossRefGoogle Scholar
  181. Sen, A., Williams, W. P., and Quinn, P. J., 1981b, The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems, Biochim. Biophys. Acta 663:380.PubMedGoogle Scholar
  182. Sen, A., Mannock, D. A., Williams, W. P., and Quinn, P. J., 1981c, Anomalous thermotropic phase transition behavior of 1,2-distearoyl galactolipids, Biochem. Soc. Trans. 9:134.PubMedGoogle Scholar
  183. Sheridan, J. P., 1981, Raman spectroscopy as a probe of structure and fluidity in phospholipid bilayers, Proceedings 4th International Conference on Surface and Colloid Science.Google Scholar
  184. Shipley, G. G., Green, J. P., and Nichols, B., 1973, The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides, Biochim. Biophys. Acta 311:531.PubMedCrossRefGoogle Scholar
  185. Siminovitch, D. J., and Jeffrey, K. R., 1982, A comparison of ester-and ether-linked lipids in a 14N NMR study of DPPC analogs, Biophys. J. 37:205a.Google Scholar
  186. Singer, M., 1981, Permeability of phosphatidylcholine and phosphatidylethanolamine bilayers, Chem. Phys. Lipids 28:253.CrossRefGoogle Scholar
  187. Skarjune, R., and Oldfield, E., 1979, Physical studies of cell surface and cell membrane structure, deuterium nuclear magnetic resonance investigation of deuterium-labeled N-hexad-ecanoyl-galactosylceramides (cerebrosides), Biochim. biophys. Acta 556:208.PubMedCrossRefGoogle Scholar
  188. Stewart, T. P., Hui, S. W., Portis, A. R., and Papahadjopoulos, D., 1979, Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles, Biochim. Biophys. Acta 556:1.PubMedCrossRefGoogle Scholar
  189. Stollery, J. G., Boggs, J. M., and Moscarello, M. A., 1980, Variable interaction of spin-labelled human myelin basic protein with different acidic lipids, Biochemistry 19:1219.PubMedCrossRefGoogle Scholar
  190. Stümpel, J., Harlos, K., and Eibl, H., 1980, Charge-induced pretransition in phosphatidylethanolamine multilayers; The occurrence of ripple structures, Biochim. Biophys. Acta 599:464.PubMedCrossRefGoogle Scholar
  191. Tilcock, C. P. S., and Cullis, P. R., 1981, The polymorphic phase behavior of mixed phos-phatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR: Effects of divalent cations and pH, Biochim. Biophys. Acta 641:189.PubMedCrossRefGoogle Scholar
  192. Tkaczuk, P., and Thornton, E. R., 1979, Carbon-13 nuclear magnetic resonance studies of cerebroside derivatives and their properties in lecithin bilayers, Biochem. Biophys. Res. Commun. 91:1415.PubMedCrossRefGoogle Scholar
  193. Tocanne, J.-F., Ververgaert, P. H. J. T., Verkleij, A. J., and van Deenen, L. L. M., 1974a, A monolayer and freeze-etching study of charged phospholipids. I. Effects of ions and pH on the ionic properties of phosphatidylglycerol and lysylphosphatidylglycerol, Chem. Phys. Lipids 12:201.PubMedCrossRefGoogle Scholar
  194. Tocanne, J.-F., Ververgaert, P. H. J. T., Verkleij, A. J., and van Deenen, L. L. M., 1974b, A monolayer and freeze-etching study of charged phospholipids. II. Ionic properties of mixtures of phosphatidylglycerol and lysylphosphatidylglycerol, Chem. Phys. Lipids 12:220.PubMedCrossRefGoogle Scholar
  195. Tokutomi, S., Ohki, K., and Ohnishi, S.-L, 1980, Proton-induced phase separation in phos-phatidylserine/phosphatidylcholine membranes, Biochim. Biophys. Acta 596:192.PubMedCrossRefGoogle Scholar
  196. Tokutomi, S., Lew, R., and Ohnishi, S.-L, 1981, Ca+2-induced phase separation in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine mixed membranes, Biochim. Biophys. Acta 643:276.PubMedCrossRefGoogle Scholar
  197. Träuble, H., 1976, Membrane electrostatics, in: Structure of Biological Membranes (S. Abrahamson and I. Pascher, eds.), p. 509, Plenum Press, New York.Google Scholar
  198. Träuble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Natl. Acad. Sci. USA 71:214.PubMedCrossRefGoogle Scholar
  199. Träuble, H., Teubner, M., Woolley, P., and Eibl, H., 1976, Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure, Biophys. Chem. 4:319.CrossRefGoogle Scholar
  200. Untracht, S. J., and Shipley, G. G., 1977, Molecular interactions between lecithin and sphin-gomyelin, J. Biol. Chem. 252:4449.Google Scholar
  201. van Dijck, P. W. M., 1979, Negatively charged phospholipids and their position in the cholesterol affinity sequence, Biochim. Biophys. Acta 555:89.PubMedCrossRefGoogle Scholar
  202. Van Dijck, P. W. M., Ververgaert, P. H. J. T., Verkleij, A. J., van Deenen, L. L. M., and de Gier, J., 1975, Influence of Ca+2 and Mg+2 on the thermotropic behaviour and permeability properties of liposomes prepared from dimyristoylphosphatidylglycerol and mixtures of dimyristoylphosphatidylglycerol and dimyristoylphosphatidylcholine, Biochim. Biophys. Acta 406:465.PubMedCrossRefGoogle Scholar
  203. van Dijck, P. W. M., van Zoelen, E. J. J., Seldenrijk, R., van Deenen, L. L. M., and de Gier, J., 1976a, Calorimetric behavior of individual phospholipid classes from human and bovine erythrocyte membranes, Chem. Phys. Lipids 17:336.PubMedCrossRefGoogle Scholar
  204. van Dijck, P. W. M., de Kruijff, B., van Deenen, L. L. M., de Gier, J., and Demel, R. A., 1976b, The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcho-line-phosphatidylethanolamine bilayers, Biochim. Biophys. Acta 455:576.PubMedCrossRefGoogle Scholar
  205. van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., van Deenen, L. L. M., and de Gier, J., 1978, Comparative studies on the effects of pH and Ca+2 on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine, Biochim. Biophys. Acta 512:84.PubMedCrossRefGoogle Scholar
  206. Vaughan, D. J., and Keough, K. M., 1974, Changes in phase transitions of phosphatidyle-thanolamine-and phosphatidylcholine-water dispersions induced by small modifications in the headgroup and backbone regions, FEBS Lett. 47:158.PubMedCrossRefGoogle Scholar
  207. Verkleij, A. J., van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and de Kruijff, B., 1980, Biochim. Biophys. Acta 600:620.PubMedCrossRefGoogle Scholar
  208. von Dreele, 1978, Estimation of lateral species separation from phase transitions in nonideal two-dimensional lipid mixtures, Biochemistry 17:3939.CrossRefGoogle Scholar
  209. Watts, A., Harlos, K., Maschke, W., and Marsh, D., 1978, Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration, Biochim. Biophys. Acta 510:63.PubMedCrossRefGoogle Scholar
  210. Watts, A., Harlos, K., and Marsh, D., 1981, Charge-induced tilt in ordered-phase phosphatidylglycerol bilayers: Evidence from X-ray diffraction, Biochim. Biophys. Acta 645:91.PubMedCrossRefGoogle Scholar
  211. Wieslander, Å., and Rilfors, L., 1977, Qualitative and quantitative variations of membrane lipid species in Acholeplasma laidlawii A, Biochim. Biophys. Acta 466:336.PubMedCrossRefGoogle Scholar
  212. Wieslander, Å., Ulmius, J., Lindblom, G., and Fontell, K., 1978, Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron nuclear magnetic resonance and X-ray diffraction, Biochim. Biophys. Acta 512:241.PubMedCrossRefGoogle Scholar
  213. Wieslander, Å., Christiansson, A., Walter, H., and Weibull, C, 1979, Fractionation of membranes from Acholeplasma laidlawii A on the basis of their surface properties by partition in two-polymer aqueous phase systems, Biochim. Biophys. Acta 550:1.PubMedCrossRefGoogle Scholar
  214. Wieslander, Å., Christiansson, A., Rilfors, L., and Lindblom, G., 1980, Lipid bilayer stability in membranes: Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape, Biochemistry 19:3650.PubMedCrossRefGoogle Scholar
  215. Wieslander, Å., Rilfors, L., Johansson, L. B.-A., and Lindblom, G., 1981, Reversed cubic phase with membrane glucolipids from Acholeplasma laidlawii: 1H, 2H, and diffusion nuclear magnetic resonance measurements, Biochemistry 20:730.PubMedCrossRefGoogle Scholar
  216. Wilkinson, D. A., and Nagle, J. F., 1981, Dilatometry and calorimetry of saturated phospha-tidylethanolamine dispersions, Biochemistry 20:187.PubMedCrossRefGoogle Scholar
  217. Wu, S. H., and McConnell, H. M., 1975, Phase separations in phospholipid membranes, Biochemistry 14:847.CrossRefGoogle Scholar
  218. Yeagle, P. L., Hutton, W. C., Huang, C.-H., and Martin, R. B., 1976, Structure in the polar head region of phospholipid bilayers: A 31P[1H] nuclear Overhauser effect study, Biochemistry 15:2121.PubMedCrossRefGoogle Scholar
  219. Yeagle, P. L., Hutton, W. C., Huang, C.-H., and Martin, R. B., 1977, Phospholipid head-group conformations: Intermolecular interactions and cholesterol effects, Biochemistry 16:4344.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joan M. Boggs
    • 1
  1. 1.Research InstituteThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations